Journal of Mathematical Modelling and Algorithms in Operations Research manuscript No.
(will be inserted by the editor)

A new search procedure for the two-dimensional orthogonal
packing problem

S. Grandcolas - C. Pinto

Received: date / Accepted: date

Abstract In this paper we propose a new exact procedure for the two-dimensional orthog-
onal packing problem, based on F. Clautiaux et al. approach [4]. The principle consists in
searching first the positions of the items on the horizontal axis, so as that, at each position,
the sum of the heights of the items does not exceed the height of the bin. Each time a valid
placement of all the items is encountered, another procedure determines if it can be extended
to a solution of the packing problem, searching the positions of the items on the vertical axis.
Novel aspects of our approach include a simple and efficient search procedure, which only
generates restricted placements, at least in a first stage, in order to reduce the search space,
and the memorization of unsuccessful configurations, which are then used to detect dead-
ends. We tested our implementation on a selection of orthogonal packing problems and strip
packing problems, and we compared our results with those of recent successful approaches.

Keywords Orthogonal packing - strip packing.

1 Introduction

In a two-dimensional space, the Orthogonal Packing Problem (OPP-2) consists in packing
a set of rectangles inside a given rectangular bin, so as no two rectangles overlap. The
rectangles are defined by their widths and heights, and their orientations are fixed (their
edges must be orthogonal to the edges of the bin). This problem is NP hard. In many recent
approaches, the positions of the items are considered independently in each dimension. A
global constraint ensures that the items do not overlap simultaneously in all the dimensions.
In this paper we focused on this type of approaches.
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S. P. Fekete and J. Schepers first proposed a modelization based on interval graphs [8].
For each dimension of the space a graph represents the intersections of the projections of
the items on the axis corresponding to this dimension. If

— each graph is an interval graph,

— in each graph no stable set has a weight greater than the size of the bin in the corre-
sponding dimension,

— no edge occurs simultaneously in all the graphs, that is no two items intersect in all the
dimensions,

then the problem is solvable and a solution can be generated from the graphs. Since neither
the effective positions nor the relative positions of the items are fixed, the same tuple of
graphs can represent many different packings. The approach can be generalised to higher-
dimensional spaces. S. P. Fekete and J. Schepers developed a method based on this mod-
elization [9]. The principle consists in enumerating all the possible tuples of graphs, looking
for a tuple that satisfies the three properties. Starting with empty graphs, the procedure ex-
plores a search tree, in which at each node a new edge is inserted in one of the graphs.
While adding new edges, the graphs can loose or retrieve the interval graph property, and
then this property must be tested at each node. As well, each time a new edge is added, the
maximal weights of the stable sets must be calculated in the graphs which violate the stable
sets property. These verifications require expensive computations. However, using relevant
bounds, S. P. Fekete and J. Schepers obtained very good results compared to the best known
classical approaches. In a two-dimensional space, in the worst case the cost of the search is
0(2”2) if there are n items. Recently, S. Grandcolas and C. Pinto proposed a SAT encoding
of S. P. Fekete and J. Schepers modelization [10]. To eliminate the unfeasible stable sets,
their idea consists in adding, for each stable set, a clause to force at least two intervals of
the set to overlap. The problem is that the number of clauses grows exponentially with the
number of items, making this encoding impractical when there are many items.

F. Clautiaux et al. [4] proposed an exact method in two-dimensional spaces named TBSP,
for two-step branching procedure. The method consists in solving with a branch and bound
a relaxation of the packing problem in which the vertical positions of the items are ignored,
but the cumulated heights of the items which overlap the same position are constrained not
to exceed the height of the bin. This is called the outer phase. Each time a solution of the
relaxed problem is discovered, an inner branch and bound procedure determines if it can be
extended to a solution of the packing problem by searching for the vertical positions of the
items. If this inner phase fails, the search continues. In most cases the solutions of the relaxed
problem are easily extended to global solutions. Then, in general, the total computation time
corresponds to the time to solve the relaxed problem. A solution of the relaxed problem can
represent many different packings, since the vertical positions of the items are ignored. This
is not comparable to S. P. Fekete and J. Schepers modelization, but the search space during
the outer phase is then strongly reduced. Using reduction procedures and relevant bounds
F. Clautiaux et al. obtained good results on a selection of problems that they generated.
Note that the relaxed problem is equivalent to a single resource scheduling problem with no
precedence constraints, and techniques from this field can be transposed in the domain of
packing.

In a more recent paper, F. Clautiaux et al. [5] describe a constraint-based scheduling
model for the orthogonal packing problem. Their idea is to represent the relaxed problem
defined in [4] together with constraints which involve the vertical positions of the items.
Energetic reasoning, a concept developed for scheduling problems, helps to detect the un-
feasability and to derive necessary conditions. They also compute minimal bounds of the
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unrecoverable area solving subset-sum problems, to verify that there is enough space for the
items when the positions of some items are fixed or strongly constrained. Integrating these
techniques in a branch-and-bound algorithm F. Clautiaux et al. obtained very good results.

Very interesting results have been published the last few years. For perfect packing prob-
lems, M. Kenmochi et al. [15] proposed several branch and bound algorithms. Solutions are
built by packing items one at a time in the bin. The best results were obtained building stair-
case placements, that is placements of the items in the bin such that the upper borders of the
top items are even lower than the items are on the right. This approach can also be used to
solve strip packing problems. Most recently J.E. Coté, M. Dell’ Amico et M. Lori [6] devel-
oped an innovative two-phases approach for the strip packing problem. During phase one, a
first attempt to solve a relaxation of the problem is made, using a branch and bound algo-
rithm. If no solution is found, and the unfeasability cannot be proved before a given limit
of the number of expanded nodes is reached, then a second attempt is made using Benders’
decomposition, a modelisation based on the solution of a linear model. Relying on CPLEX
to solve the linear program, this approach gives impressive results.

We propose in this paper an exact method for the two-dimensional orthogonal packing
problem based on the approach of F. Clautiaux et al. [4]. The core of the method is a pro-
cedure that searches for the horizontal positions of the items, that we call placements. This
procedure explores the search space in a very efficient way, generating only placements in
which no item, which is not already at the leftmost position in the bin, can be moved im-
mediately to the left without violating the height constraint. In some cases there exists no
solution of the packing problem that corresponds to such placements, and then some place-
ments that do not satisfy the property must also be generated. Additional techniques help to
avoid useless explorations. At each node of the search tree, if the exploration does not suc-
ceed, a two-dimensional representation of the remaining free vertical space is memorized.
We call it the profile of the placement. If later a configuration with a similar or worse profile
is encountered, the branch will be abandoned. Profiles are also used for calculating minimal
bounds of the wasted space with a knapsack algorithm.

The paper is organized as follows: in the next section we define canonical placements,
which represent the positions of the items on the axis. In the third section we describe
the search procedure. In the fourth section we present additional techniques to improve
the search. Finally, in the fifth section, we report the results of our approach on classical
problems, and we compare its performances with those of the best known approaches.

2 Placements

Given a rectangular bin of width W and height H, and a set of n rectangular items of widths
wi,...,wy and heights iy, ..., h,, the orthogonal packing problem consists in determining if
the items can be packed in the bin with their sides parallel to the sides of the bin, in such
a way that no two items overlap. The positions of the items in the bin are defined by their
positions on the x-axis and on the y-axis (the x-axis corresponds to the width of the bin and
the y-axis to the height). The position 0 on the x-axis corresponds to the left side of the bin,
and the position 0 on the y-axis corresponds to the bottom of the bin. The widths, the heights
and the positions of the items are integers. Since the width of the area occupied by two items
packed side by side is the sum of their widths, we can consider that the right side of the first
one and the left side of the second one are at the same position. In fact the projection of
item i on the x-axis is the interval [p, p + w;][ if p is the position of i on the x-axis and w; is
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its width. Similarly the projection of item i on the y-axis is the interval [p, p + k[ if p is the
position of i on the y-axis and #; is its height.

In this section we describe how the positions of the items on the two axis are represented,
and we introduce some constraints on the positionnement of the items which aim at reducing
the size of the search space.

Definition 1 [Placements]. A placement on the x-axis is a sequence P = ((i1, p1),- .-, (im, Pm))
where i,..., i, are items and py, ..., p, are integers, such that, for each pair (i;,p;), p; +
wi; < W holds, and either p; = 0, or there exist k, 1 < k < m, such that p; = p; +w;,.
Placement P satisfies the height constraint if at each position p; on the x-axis, Hp(p;) < H,
where Hp(p) = Yie(1om}/pe<p<pitwi, M-

Similarly, a placement on the y-axis is a sequence P = ((i1, p1),. .-, (im, Pm)) such that, for
each pair (ij,p;), pj+ hi; < H holds, and either p; = 0, or there exist k, 1 <k <m, such that
Pj = Pk +hi,. Placement P satisfies the width constraint if at each position p;, We(p;) <W,
where Wp(p) = Zke{l,.4.,m}/pk§p<pk+h,-k Wiy

Placements are used to represent the positions of the items in the bin. The items are
necessarily inside the bin, either at the position 0 or side by side with another item. This
idea was introduced by J. C. Herz [11] for the two-dimensional stock cutting, and is also
well-known in the domain of scheduling (see Stinson J. et al. [18]). Packings of this type are
called gapless packings (S. P. Fekete and J. Schepers [8]).

Definition 2 [Consistent placements]. If P, is a placement of the items on the x-axis, and
P, is a placement of the items on the y-axis, P, and P, are consistent if and only if, for any
two items i and j, if (x;,y;) and (x;,y;) denote the positions of i and j in P, and P,

Xi+wi Sxjorxizxj+wjoryi+hi <yjory;=yj+h;

Consistent placements represent the gapless solutions of packing problems. Indeed, each
item is inside the bin (from the definition of the placements), and no two items overlap (from
the definition of consistent placements). Then, searching for a solution of a packing problem
amounts to searching a placement of the items on the x-axis P, and a placement of the items
on the y-axis P, which are consistent. Moreover Py and P, satisfy necessarily the height and
width constraints (if P, does not satisfy the height constraint then there exists a set of items
which overlap each others in P, and which cannot be positionned on the y-axis inside the
bin with no overlapping). From now, any placement to which we will refer is supposed to
satisfy the height or width constraint depending on the axis.

Definition 3 [Canonical placements]. A placement P = ((i1,p1), ..., (im, pm)) is ordered
if, for each pair (i;, p;) with j <m, p; < pjy1, and if p; = p;11 then i; < ij;1, where < is
a given a priori order on the items.

The placement P is locally minimal if, for each pair (i, p;) such that p; >0, Hp(p; — 1)+
hi; > H if P is a placement on the x-axis, and We(pj—1)+ wi; > W if P is a placement on
the y-axis.

The placement P is canonical if P is ordered, locally minimal, and P satisfies the height
constraint (resp. the width constraint) if P is a placement on the x-axis (resp. on the y-axis).
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The ordering constraint helps, while generating placements, to avoid mutiple generation
of the same configuration (modulo a rearrangement of the sequence). A similar technique
is used by S. Martello et al. [16] and later R. Alvarez-Valdes et al. [2] in their branch and
bound algorithms, when successive choices can be done indifferently in any order. Local
minimality constrains the placements of the items in one dimension, ignoring their positions
in the other dimension. It is quite different from gapless packings. This concept is fairly
close to the left shift rule proposed by E. Demeulemeester et al. in [7] in the domain of
scheduling: if a task can be moved backward it must be.

Property 1 If there exists a placement P, of the items on the x-axis which satisfies the height
constraint, then there also exists a canonical placement of the items on the x-axis which
satisfies the height constraint.

Proof. A canonical placement P, can easily be constructed from P;. The processus consists
first in reordering placement Py so as that two consecutive pairs (ij,p;) and (ij+1,pj+1)
satisfy pj < pjy1 or pj = pji1 buti; < i1, then in shifting the items one after the other
as much as possible on the left (that is while the height constraint is satisfied) considering
the items in the order in which they occur in the placement, and finally in reordering again
the placement, as in the first step. The placement P, obtained this way is canonical by con-
struction, and P, dominates the placement P,. The property also applies to placements on
the y-axis.

Then any feasible orthogonal packing problem admits a canonical placement of the
items on the x-axis. Indeed, there exists a placement of the items on the x-axis which cor-
responds to a solution, and then there also exists a canonical placement. This statement can
help while searching consistent placements: if there exists no canonical placement of the
items on the x-axis (or on the y-axis) then the problem is not feasible.

Fig. 1 A solution of a packing problem which does not correspond to a minimal placement

However a packing problem can be feasible, but have no solution whose projection on
the x-axis (or the y-axis) is a canonical placement. Consider for example the problem with
11 items of sizes 15 x 3, 15x3,3x10,3x 10,13 x2,13x2,14x1,2x7,2x7,2x4
and 2 x 4, and a bin of size 20 x 15. There exists a unique solution (modulo an horizontal
or vertical flip and the interchangeability of the identical items), depicted in figure 1. To
be convinced of this, just note that (1) items 1, 2, 1’ and 2’ are engaged in pairs forming
a circle, since three of them cannot overlap neither on the x-axis nor on the y-axis, and (2)
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Fig. 2 Items 5 and 5° cannot be both packed above or under item 4

items 5 and 5’ are on either side of item 4 (see figure 2). In this solution the position of item
6’ is not minimal (there is enough vertical free space immediately to the left of item 6”).

The simplest way to construct a placement consists in extending an initially empty se-
quence iteratively, adding new pairs (item, position) at the end of the sequence. The addition
of a new pair is called an extension. We will only consider the extensions which satisfy the
height (or width) constraint and the ordering constraint, so as to only generate ordered place-
ments which satisfy the height (or width) constraint. An extension is locally minimal if the
position of the new item is either O or a position p such that the item could not be positioned
at p — 1 not violating the height constraint. A placement constructed with locally minimal
extensions starting with an empty sequence is canonical. Remark that there can be no locally
minimal extension with a given item i, even if there exists an extension (not locally minimal)
with i. This situation occurs if, p,, being the position of the last pair of the placement, item
i can be positioned at p,, — 1, whithout violating the height constraint. The potential exten-
sions of a placement P with item i can be generated starting from the position p of the last
pair of the placement (or the position 0 if P is empty), and enumerating the positions of the
right sides of the items of P which are greater than p, in increasing order. The positions such
that i should be outside of the bin or such that the height constraint is violated, are ignored.
If p,in denotes the smallest of the remaining positions, if p,,;, is 0 or if Hp(pyin — 1) > H
then pi, is the locally minimal extension of P with i. In the other case there is no locally
minimal extension of P with i.

According to a well-known principle introduced by J. C. Herz [11], a feasible problem
has solutions in which any item is moved as down and as left as possible. For consistent
placements this idea translates into the following property.

Property 2 1If P; and P, are consistent placements respectively on the x-axis and on the y-
axis, then there exists a placement Py’ of the items on the y-axis such that:

— P, and P)’ are consistent,

— for any item i, either i is at the position 0 in P}, or there exists an item j such that, if (x;, ;)
and (x;,y;) are the positions of i and j in Py and P, x; < xj<xi+wiorx; <x <xj+wj,
and y; =y; +h;.

Proof. Placement Py’. is constructed from P, first decreasing the positions of the items as
much as possible while no two items overlap simultaneously on both axis, considering the
items in the order in which they occur in P,, then in reordering the placement. P)’ satisfies
necessarily the width constraint. Indeed, if C is a set of items which overlap one with any
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other in Py’, since no two items of C overlap in P, the sum of their widths is less than the
width of the bin.

3 Search procedure

The method that we propose is based on F. Clautiaux et al. approach [4]. It consists in
searching all the placements of the items on the x-axis (the outer phase), and for each place-
ment in searching a consistent placement on the y-axis (the inner phase). The inner phase
is theoretically less costly, since the positions of the items on the x-axis have been already
assigned, and then the search space is strongly reduced. The backtracking search procedure
is described below (function SearchPacking). An innovative aspect of this procedure is,
in the outer phase, the restriction of the search to canonical placements, at least in a first
stage. Indeed, if some canonical placements on the x-axis are discovered but no consistent
placement on the y-axis exists, then, to be complete, the procedure must also generate non-
canonical placements.

Function SearchPacking(P, S, W, H)

begin

if S = 0 then
if SearchVerticalPositions(P,W, H) =TRUE then
| return SUCCESS;

else
| return NOCONSISTENT;

if there exists (S, @) € .7 such that @ C profile(P) then
| return FAILURE;

if MaximalAvailableArea(P,S,W,H) < Area(S) then
| return FAILURE;

M := LocallyMinimalExtensions(P,S, W, H);

V=0
r:= FAILURE;
while M # 0 do

(i,p) := SelectMin(M);
M :=M\{(i,p)};
VvV =vU{i};
status := SearchPacking(PU{(i,p)},S\ {i},W,H);
if status = SUCCESS then
[ return SUCCESS;
if status = NOCONSISTENT then
r:= NOCONSISTENT;
M := M UNextExtension(i, p, P,W,H);

if r = FAILURE and V = S then
| T =T U{(S,profile(P))};

return r;

end
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The function SearchPacking has four parameters: P a placement of items on the x-axis,
S a set of items which are not in P, W and H the width and height of the bin (the widths and
heights of the items are omitted to simplify the function). The function returns SUCCESS
if there exists a packing whose projection on the x-axis is an extension of P. Else, if there
exist placements of all the items on the x-axis which extend P, but no consistent placement
on the y-axis, then the function returns NOCONSISTENT. Finally, if there is no placement
of all the items on the x-axis extending P, the function returns FAILURE. First the function
is called with an empty placement and the set of items of the packing problem.

The function SearchPacking explores a tree, choosing at each node a new extension
for the placement P. If the set S is empty (all the items are positioned in P), the function
SearchVerticalPositions is called, to search a (not necessarily canonical) placement
of the items on the y-axis which is consistent with P. If S is not empty (some items are
not positioned on the x-axis), a loop iterates through the set M of the possible extensions
of P with the items of S, which are locally minimal. For each extension (i, p) a recursive
call determines wether there exists a packing including this extension or not. If the result is
SUCCESS then the function returns SUCCESS: a packing exists which extends placement
P. If the result is NOCONSISTENT, and if there are extensions of P with i at positions
greater than p, then the function NextExtension returns the extension with the smallest
position. This extension is necessarily not locally minimal. It is inserted in M, forcing the
search to consider again the choice of item i to extend P. If there is no extension with i at
a position greater than p, the function NextExtension returns the emptyset. Note that the
placements obtained with the new extension cannot be generated with any other extension
of M. Finally, if no recursive call of the function SearchPacking returns SUCCESS and
if some placements containing all the items were discovered during the current exploration,
then the function returns NOCONSISTENT, in order to indicate to the ancestor nodes that
branches with non-minimal extensions must be eventually explored. If no placement on
the x-axis has been found, the function returns FAILURE, and the triplet (S, profile(P),V),
where V is the set of the variables with which P has been extended in the current call,
is added to the table .7, so as to avoid useless explorations if similar configurations are
encountered (see next section).

The function SearchVerticalPositions follows the same scheme as the function
SearchPacking, except that all the extensions are explored (even those which are not
canonical) excluding those that are not consistent with the placement on the x-axis. How-
ever, it can be deduced from property 2 that it suffices to consider the vertical placements in
which any item touches either the bottom side of the bin or the upper border of another item.
The evaluation of an upper bound of the available area and the memorisation of the profiles
are useless in this phase, and then searching the vertical positions can be very costly.

We tested several heuristics to choose the most promising extensions first. It seems that
the best strategy consists in considering the extensions in increasing order of their positions,
choosing at first the ones with the smaller ranks in case of equality. Indeed, the items are
then positioned as much as possible on the left of the bin, and the wasted area should be
limited. Furthermore, the extensions corresponding to identical items, that is items with the
same width and the same height, are equivalent: if one of them turns out to be unsuccessful
it will be the same with the others. Then, at each node of the search tree, no more than one
extension for each class of identical items is to be considered. Finally, at each node of the
search tree the function MaximalAvailableArea is called to compute an upper bound of
the area which is available to pack the items of S, considering the placement P. If the result
is less than the total area of the items of S, the current branch is abandonned. This evaluation
is described in the next section.
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4 Profiles

Placements can be represented in a two-dimensional space by contiguous vertical strips,
delimited by the positions of the items on the x-axis, where the height of each strip is the
sum of the heights of the items which overlap the strip (see the diagram on the left in figure
3). A profile is a slightly different representation which better reflects the wasted space
corresponding to a placement.

Definition 4 [Profiles]. Given a non-empty ordered placement P = ((i1, p1),. .-, (im, Pm))s
if ry,...,ry are the positions of the right sides of the items in P sorted in increasing order

of their values, and ry is the value 0, then the profile of P denoted profile(P) is the polygon
defined by the set of points

{(r070)7(70ael)7(r17€1)>(r1732)7(r2732)a“'>(rmflaem)7(rm;em)>(rm>em+l)}

where ep1 =0and Vi, 0 < i <m,if r; < p, then e; = H else ¢; = max{e;t1,Hp(ri_1)}.

| am o maaa e2.el
ht
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0 gl r2 3 r4 5 0 r r2 3 r4 5

Fig. 3 A placement and its profile

Figure 3 shows the profile of a placement of a set of items. The profile is the light grey
area in the drawing on the right, on the inside of the rectangle that represents the bin. It
is composed of contiguous vertical strips with decreasing heights, and the strips at the left
of the position p,, occupy the entire height of the bin. Profiles resemble Martello and al.
envelopes [17], with the difference that envelopes are based on the positions of the items on
both axis.

The free area above each strip of the profile can only be occupied by the items which are
not yet in the placement. The combination of items which maximizes the vertical occupation
can be calculated with a knapsack algorithm. It gives a lower bound of the wasted space
(represented in figure 3 with violet rectangles at the top of the strips). Added to the surface
areas of the items which are not already in the placement, it constitutes a lower bound of the
free available space which is necessary to place the remaining items, and it helps to detect
dead-ends while searching for a placement. The same computation can be performed in the
horizontal direction, if we consider the profile as a series of slices stacked one on another.
Combining the wasted areas in both directions, making sure not double counting the areas
which could overlap, provides an even better lower bound.
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Other approaches exploit similar evaluations. In their constraint programming model F.
Clautiaux et al. [5] evaluate the wasted space on each portion of the x-axis on which the
available height and the set of eligible items are constant. In their branch and bound algo-
rithm M. Kenmochi et al. [15] use a bounding rule called DP cut which is based on the
evaluation of the space that cannot be filled in staircase placements. For strip packing prob-
lems, R. Alvarez-Valdes et al. [2] proposed a lower bound, denoted L7, which is evaluated
using a knapsack algorithm. The bound is evaluated only once, before any item has been
packed. An effort is made to reflect the fact that the same item cannot be used to maximise
the occupation at each level in the bin.

Failures memorization

The result of the function SearchPacking only depends on the set of items S, on the pro-
file of the placement P, and on the rank and position of the last item in P. If the result is
FAILURE, that is if there is no canonical placement of the items of S on the x-axis extend-
ing P, a simple idea consists in memorizing these informations in order to avoid a useless
exploration next time the same configuration is encountered. Similar techniques have been
already experimented in the domain of scheduling (see for example the cutset dominance
rule proposed by E. Demeulemeester et al. [7]). Intuitively, if P and Q are two placements
of the same set of items, then if the profile of P is contained in the profile of Q, then P has
more chances than Q to be extended to a placement of all the items. Unfortunately this is not
true if we consider only locally minimal extensions. Figure 4 shows two placements P and
Q of items iy, i3 and is. The profile of placement P is contained in the profile of placement
Q. However, if the ordering of the items is i; < i» < i3 < ig, O can be extended with item
iy, while there is no locally minimal extension of P with iy, since i, should have the same
position as i3, and i < i3.

i3 i3

P Q

Fig. 4 The profile of P is contained in the profile of Q, but P cannot be extended with i»

To work around this problem we propose to memorize unsuccessful configurations
uniquely when there exists an ordered and locally minimal extension for each not-yet-placed
item. Indeed, if P satisfies this condition, if there exists a sequence Eg such that the con-
catenation of Q and Ep, denoted Q- Ep, is a valid placement, then there exists a sequence
Ep such that P- Ep is a valid placement. To simplify the proof we will first suppose that P is
canonical. The placement P - Ep is obtained from P - Eg, using the transformation described
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in the proof of Property 1. Since the profile of P is contained in the profile of O, the sequence
P-Ey is a placement (the items are inside the bin and it satisfies the height constraint). The
transformation lets the positions of the items in P unchanged since P is canonical, and the
final positions of the other items are all greater or equal to the position py, of the last item
ijasr Of P, since there is a locally minimal extension of P with each item not in P. For the
same reason, for each item i in Ep, whose position after the transformation is pj,g, ijgsr < i
holds. Then if P cannot be extended to a placement of all the items, Q cannot either. If P is
not canonical the transformation must be restricted to Eg, to let the positions of the items in
P unchanged.

Memorization works as follows: each time the function SearchPacking returns FAIL-
URE, if there is an extension for each item of S, then the set S and the profile of P are
memorized in the hash table .7. When a new node is expanded, the function looks in the
hash table for a configuration with the same set of free items and a profile contained in the
current profile, to avoid a useless exploration. Remark that memorization does not fit well
with other techniques intended to prune the search tree, like pseudo-symmetry breaking or
blocks ordering [4]. Pseudo-symmetry breaking aims at avoiding the generation of packings
and their symmetrics with respect to the x-axis or y-axis. A simple way to implement this
constraint in placements consists in forcing two items i and j to always occur the first one
before the second one in the placements. To be consistent with the memorization (that is
to ensure that the above proof remains true), the transformation described in the proof of
Property 1 must preserve the order in which i and j occur in the placement. For placements
on the x-axis this is achieved choosing i with a smaller height than j. We did not use these
techniques which are not very useful as the profiles are memorized.

5 Experimental results

We have implemented the function SearchPacking and we have compared the computa-
tion times with those of other well-known approaches. In this implementation the items are
ordered in decreasing order of their areas (this ordering defines the ranks of the items), and
at each node of the search tree the valid extensions are explored in increasing order of their
positions. Moreover, before starting the exploration, the problems are simplified, removing
the items which cannot be placed with any other items one beside the other (resp. one above
the other) and reducing the size of the bin accordingly. Apart from this basic initial simpli-
fication, no technique is used to detect non-feasible instances or to modify the sizes of the
items or the sizes of the bin before the search.

First we evaluated the efficiency of the memorization of the profiles, and the gain pro-
vided by the evaluation of the wasted space with a knapsack algorithm, as described in
section Profiles. We have reported in table 1 the computation times in seconds and the av-
erage numbers of nodes which are explored per second, on a selection of problems from F.
Clautiaux. We considered three alternatives for the evaluation of the wasted space: either
the wasted space is calculated only in the vertical direction, or it is calculated in both the
vertical and horizontal direction and these values are combined to deduce a lower bound, or
the wasted space is not evaluated, and the algorithm backtracks when there is not enough
free space for the items that remain to be packed. We reported only the results of the hardest
problems. First it may be noticed that combining the vertical wasted space with the horizon-
tal wasted space is better but does not produce significant gains. In fact, since the wasted
spaces corresponding to the horizontal strips and those corresponding to the vertical strips



12 S. Grandcolas, C. Pinto

Wasted space vertical only vert. and horizontal no evaluation
Memorization yes no yes no yes no
E03X18 S 0.15 0.20 0.09 0.27 0.14 0.76
E20F15 S 0.00 0.15 0.00 0.25 0.00 0.40
E20X15 S 0.12 0.07 0.07 0.11 0.13 0.19
EO0N23 U 1.30 2.57 1.15 2.47 2.56 5.03
E00X23 U 24.83 22.33 23.74 20.76 71.90 36.81
E02N20 U 5.35 8.14 4.40 7.03 8.27 16.70
EO03N16 U 0.82 1.07 0.92 1.17 1.50 1.59
E04N17 U 0.15 1.06 0.15 0.83 0.18 1.86
E05X15 U 1.37 11.45 1.41 9.57 1.62 29.48
E07X15 U 0.73 6.63 0.77 4.92 0.88 10.10
E10N15 U 0.08 1.88 0.04 1.50 0.05 3.13
E10X15 U 0.80 4.62 0.76 4.05 0.81 6.46
E13X15 U 0.15 11.20 0.15 7.59 0.15 22.40
total time 35.85 71.37 33.65 60.52 88.19 134.91
nodes per sec 619597 2451753 643185 3418031 368385 3624383

Table 1 Computation times for a selection of F. Clautiaux instances with different options

can overlap, it would not be correct to just add them together. We must subtract an upper
bound of the surface of the intersections, and then considering the two dimensions does not
necessarily produce significantly better bounds. On the contrary, if the wasted space is not
at all taken into account, then the search is strongly penalized, especially if the problem is
hard.

The memorization of the profiles helps to avoid useless explorations, and in general
it speeds the search. However it is costly, even more if many profiles have been stored. In
particular, if the wasted space is not evaluated but the profiles are memorized, the exploration
is very slow (in average 368385 nodes are explored per second). Indeed many profiles are
memorized, and searching if a dominating profile exists for the current set of free items is
then very costly. In the worst case (see the problem E00X23) it is better not to memorize,
since the advantage is smaller than the cost. However, in the general case, the best strategy
consists in combining the computation of the waste space with the memorization of the
profiles.

We also compared the results of our approach with the results of the best-known ap-
proaches on orthogonal packing problems (OPP-2) and on strip packing problems (SPP-2)
(pack a set of items into a strip of fixed width and minimum height). For OPP-2 we used
the selection of problems proposed by Clautiaux et al. [4]. Table 2 summarizes the results.
We reported the characteristics of the problems, and the computation times of different ap-
proaches, that can be found in the literature: Fekete et al. in [9] (FS), Clautiaux et al. in [4]
(C107), Clautiaux et al. in [5] (C108 er for the version with energetic reasoning and Cl08 ss
for the version using the solutions of subset-sum problems, and no preprocessing methods
or lower bounds evaluation at the root node in both versions), Grandcolas and Pinto in [10]
(GP) (a SAT encoding of Fekete and Schepers characterization that uses an external SAT
solver), Joncour et al. in [14] (JP) (an approach based on the characterization of Fekete et al.
using MPQ-trees), and the results of the approach that we described in this paper (SMP!).

Times are in seconds. FS times were obtained with a Pentium 4 3.2 GHz (and a time out
of 900 seconds that we use to compute the mean time), C107 times with a Pentium 4 2.6 GHz,

U search and memorize for packing
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C108 times with a Pentium M 1.8 GHz, GP times with a Pentium 4 3.2 GHz, and JP times
with a Pentium 4 3 GHz. For all our experiments we run SMP on a machine equipped with
a Xeon processor at 2.4 GHz (we estimate between 1.5 and 2 the ratio between a Pentium 4
3.2 GHz processor and a Xeon 2.4 GHz processor, and around 4 the ratio between a Pentium
M 1.8 GHz and a Xeon 2.4 GHz). In the version that was used the wasted space was obtained
from an evaluation in the two dimensions, and the profiles are systematically memorized.

Instance FS Cl107 Cl08 er Cl08 ss GP JP SMP
Name feas. n time time time time time time time
E02F17 F 17 7 12 0.01 0.00 4.95 30 0.00
E02F20 F 20 - 12 0.03 0.03 5.46 2 0.04
E02F22 F 22 167 4 0.00 0.01 7.62 2 0.00
E03X18 F 18 0 22 0.09 0.11 24 0.09
E04F15 F 15 0 1 0.02 0.03 60 0.00
E04F17 F 17 13 26 0.03 0.01 0.64 9 0.02
E04F19 F 19 560 7 0.01 0.01 3.17 14 0.01
E04F20 F 20 22 3 0.79 1.05 5.72 0 0.00
EO05F15 F 15 0 3 0.01 0.01 0 0.00
EO05F18 F 18 0 126 0.01 0.00 0 0.00
E05F20 F 20 491 2 0.97 0.96 6.28 6 0.00
EO07F15 F 15 0 1 0.08 0.14 0 0.00
EO8F15 F 15 0 117 0.00 0.00 0 0.00
E20F15 F 15 0 1 0.24 0.54 1 0.00
E20X15 F 15 0 44 0.00 0.00 8 0.07
EOON10 N 10 0 0 0.01 0.01 0 0.00
EOON15 N 15 0 2 0.00 0.02 2 0.10
EOON23 N 23 - 86 0.48 0.43 87 1.27
E00X23 N 23 - 289 5.98 5.40 - 23.62
E02N20 N 20 0 1 0.01 0.01 0 4.40
EO3N10 N 10 0 0 0.01 0.00 0 0.00
EO3N15 N 15 0 1 0.29 0.53 21 0.25
EO03N16 N 16 2 32 0.57 1.12 39.90 51 0.74
E03N17 N 17 0 4 0.02 0.03 4.44 45 0.19
E04N15 N 15 0 1 0.52 1.09 7 0.09
E04N17 N 17 0 1 0.00 0.01 3 0.14
E04N18 N 18 10 7 0.05 0.05 161.34 7 0.08
EO5N15 N 15 0 0 6.08 13.19 4 0.06
EO05N17 N 17 0 1 0.10 0.22 1 0.08
E05X15 N 15 2 0 3.17 6.88 110 1.28
EO7N10 N 10 0 0 0.01 0.00 0 0.00
EO07N15 N 15 0 0 0.01 0.00 0 0.05
E07X15 N 15 0 1 0.17 0.31 79 0.61
EO8N15 N 15 0 1 0.08 0.12 3 0.04
EION10 N 10 0 0 0.00 0.00 0 0.00
EI0N15 N 15 0 0 1.10 1.96 0 0.04
E10X15 N 15 0 1 0.21 0.32 50 0.60
EI3N10 N 10 0 0 0.02 0.03 0 0.00
EI3N15 N 15 0 0 0.00 0.00 0 0.00
E13X15 N 15 0 0 0.65 1.16 2 0.15
E15N10 N 10 0 0 0 0.00
E15N15 N 15 0 0 0.01 0.01 0 0.00
mean times 94.62 19.26 0.53 0.87 57.81 0.81

Table 2 Computation times in seconds to solve a selection of OPP-2 instances proposed by F. Clautiaux
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On OPP-2 feasible instances SMP outperforms the other approaches. The order in which
the extensions are considered, starting with the leftmost extensions, seems very effective. In-
deed, for feasible instances it plays a significant role, guiding the search towards the choices
which appear to be the most promising. On unfeasible instances Cl08 er and Cl08 ss are
clearly the best performers. Their mean times are better than those of SMP, and the ma-
chine used for SMP is faster. F. Clautiaux et al. approach is particularily efficient when the
problems are hard, see for example the problems EOON23, E00X23 or EO4N18. An explana-
tion for this is that, in their constraint-based model, the positions of the items on the x-axis
and on the y-axis are constrained together. Each time the position of an item on the x-axis is
fixed, constraint propagation helps to eliminate some positions of the free variables on the
x-axis, but also on the y-axis. Thus the inconsistency can be detected much earlier, even if
the relaxed problem has no solution. That is particularly true in the case of problems which
are highly constrained, such as the instances EOON23 and E00X23 in which the total area of
the items equals the area of the bin. It is also true for “easy” problems: for example Cl08 er
solves the instances EO7N10, EOIN10, E13N15 or E15N15 exploring a unique node, while
SMP explores between 3000 and 5000 nodes (in the same time). However, there are a few
instances (EOSN15, E10N15 or E13X15) on which SMP gets good results. Remark that,
using the preprocessing methods and the lower bounds described in [4] at the root node, the
performances of Cl08 er and Cl08 ss on these instances change completely (see the times
in [5]). This explains the performances of FS and Cl07 on these instances.

In the outer phase the items are packed as much as possible on the left side of the bin.
This is pertinent when the problem is tightly constrained. If the bin is very large compared to
the total area of the items, this strategy is inappropriate. The items share many intersections,
and it becomes very hard to assign vertical positions to the items, exactly as if the bin was
narrow. Then the procedure spent most of the time in the inner phase. To address this prob-
lem, we propose to consider, uniquely in the outer phase, a bin with a reduced height. This
additional constraint makes the placements on the x-axis more homogeneous, and the search
for the vertical positions of the items easier. If no solution is found with the reduced height
then the search is reiterated with the real height, to confirm or invalidate the infeasibility.
This idea is of great interest when solving strip packing problems with a decrease height
strategy. In this case, the algorithm solves a series of problems which are all feasible except
the last one. Table 3 shows the numbers of expanded nodes and the computation times for
solving the same problem while varying the height of the bin (this example is based on the
problem EO5F20 from F. Clautiaux).

Three approaches are presented. In the first one (column normal search) the function
SearchPacking is just called to solve the instance. In the second approach (column 90-
degree rotation) a 90-degree rotation is applied to the problem just before calling the search
procedure. In the third one, the search procedure is called for each height, but in the outer
phase the height of the bin is assigned a median value between the current height and a lower
bound obtained by dividing the total area of the items by the width of the bin. In the inner
phase the real height is used. If a solution is found with the reduced height then the problem
is also feasible with the real height. In the other case the search is reitered with the real
height in both phases, to confirm the unfeasibility. For each height or width we reported the
feasibility (or — if the timeout is reached), the number of expanded nodes N1 in the outer
phase, the number of expanded nodes N2 in the inner phase, and the computation time.
With the first approach the computation times are sometimes very important whereas the

2 141190 to discover the unfeasibility with the lowered height, and 20 to find the feasibility with the real
height
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normal search 90-degree rotation reduced height in phase 1
h |feas. N1 N2 time |feas. N1 N2 time | feas. N1 N2  time
26 | — 21 48303478 >60 S 20 68057 0.15 S 20 20 00
25 | — 20 23990744  31.66 | S 20 58312 0.13 S 20 20 00
24 | S 20 20 0.0 S 20 43696  0.10 S 20 20 00
23 | — 21 41089487 >60 S 20 33778  0.09 S 20 118 0.0
22 1S 20 20 0.0 S 20 20362  0.06 S 20 20 00
21 | S 20 110 0.0 S 20 12203 0.04 S 20 20 00
20 | S 20 20 0.0 S 1593 280141 0.85 S 1412102 20 0.26
19 | U 44966 0 008 U 58081 0 0.08 U 44966 0 0.10
18 | U 0 0 00 8] 0 0 00 8] 0 0 00
17 | U 0 0 0.0 U 0 0 00 8} 0 0 00

Table 3 Computations times to solve a packing problem for different heights of the bin

bin is high and the problem easy. There is no memorization in the second phase, and then
searching the vertical positions can generate huge explorations (see for example the number
of expanded nodes in the second phase when the height is 26). The third implementation
corrects this defect: easy problems are easy to solve. The computation time is the most
important (0.26 seconds) when the height is 20 (the optimal value). The search procedure
has been called two times for this instance: first, with a lowered height in the outer phase, it
returns failure, and secondly using the current height in both phases, it returns success with
a negligible computation time.

It appears clearly from these results that the best strategy for the strip packing problem
consists in increasing the height of the strip, starting with a minimal bound. We reported
in table 4 the results published by S. Martello et al. [16] (MMYV), R. Alvarez-Valdes et al.
[2] (AVPT), M. Boschetti and L. Montaletti [3] (BM), and M. Kenmochi et al. [15] (ST
for STAIRCASE and G-ST for G-STAIRCASE), on a selection of strip packing problems.
These approaches are based on branch and bound algorithms, and use lower bounds, domi-
nance rules and problem relaxation techniques. They appear to be the best exact approaches
yet, if we do not include the approach of J.F. C6té, M. Dell’ Amico et M. Lori [6] which
makes use of CPLEX to solve linear programs, and then should be considered in a class
by itself. We also reported the results that we obtained with an increase-height strategy (the
height of the bin is incremented one by one while the problem is not feasible starting from a
lower bound) and with a decrease-height strategy using a reduced height in the outer phase
as described above. For each instance we have indicated the number of items, the width of
the strip and the optimal height. MMV used a Pentium III 800 MHz with a time limit of
3,600 seconds, AVPT computation times were obtained with a Pentium 4 at 2 Ghz with
a time limit of 1,200 seconds, BM computation times with a Pentium M 725 1.60 GHz
and a time limit of 1,200 seconds, and ST and G-ST with a Pentium 4 3.0GHz and a time
limit of 3,600 seconds. We made our experimentations on a Linux machine equipped with a
Xeon 2.4 GHz processor (a machine three times faster than the machine used by R. Alvarez-
Valdes et al.) and a time limit of 1,500 seconds. Times are in seconds, and a — denotes that
the program reached timeout.

The increase-height strategy outperforms the decrease-height strategy. By analysing pre-
cisely the causes of the poor performances of the latter, we observed that in many cases the
program spent most of the time in the inner phase, that is searching the vertical positions
of the items, even if a reduced height is used in the outer phase. The results are identical if
a 90-degree rotation is applied to the problem before calling the search procedure. In fact,
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Instance MMV  AVPT BM ST G-ST incr. decr.
Name n w  opt. time time time time time time time
htl 16 20 20 10.84 0.03 3.84 0.10 0.07 0.00 0.02
ht2 17 20 20 |3043.25 0.36 149.98 0.12 0.07 0.00 1.91
ht3 16 20 20 | 500.75 0.02 1.22 0.08 0.10 0.00 2.57
ht4 25 40 15 8.26 0.06 611.70 0.08 0.11 0.01 -
ht5 25 40 15 20.29 0.03 300.95 0.09 0.06 0.05 142.51
ht6 25 40 15 16.94 0.02 25.79 0.11 0.06 0.00 | 1349.63
ht7 28 60 30 - 1.70 654.56 0.12 0.10 9.54 —
ht8 29 60 30 — — 732.05 71.40 76.97 0.35 —
ht9 28 60 30 0.00 8.55 669.90 0.10 0.13 17.07 —
cgeutl 16 10 23 11.48 0.02 0.69 0.10 0.12 0.00 0.20

cgeut2 23 70 64 - - — — — — _

geutl 10 250 1016 0.00 0.02 0 1.17 0.00
geut2 23 250 1187 - - 7.41 - -

ngcutl 10 10 23 0.05 2.11 0.08 |2080.04 0.39 0.00 0.00
ngeut2 17 10 30 11.31 3.11 0.47 - — 0.01 0.01
ngcut3 21 10 28 27.01 0.00 1.62 0.09 0.10 0.00 0.02
ngeutd 7 10 20 0.00 0.03 0.14 3.63 0.14 0.00 0.00
ngeut5 14 10 36 0.00 0.00 0.34 0.11 0.07 0.00 0.01
ngeut6 15 10 31 727.20 4.39 0.84 - 147.31 0.02 0.31
ngcut? 8 20 20 0.00 0.00 0.38 - 0.10 0.00 0.00
ngcut8§ 13 20 33 53.09 3.39 15.39 30.51 0.50 0.00 0.03
ngcut9 18 20 50 — 56.13 286.55 - 1971.64 0.12 4.46
ngcutl0 13 30 80 0.18 2.61 6.58 - 113.98 0.06 0.00
ngcutll 15 30 52 | 483.01 11.88 107.47 — 7.71 0.03 0.09
ngcutl2 22 30 87 0.00 0.03 1.41 - — 63.93 12.16
bengl 20 25 30 | 911.58 5.41 26.95 0.53 0.93 0.0 0.21
beng2 40 25 57 - 0.41 72.55 1.13 22.89 | 314.95 -

Table 4 Computation times in seconds to solve strip packing problems (SPP-2)

the increase-height strategy leads to solve unfeasible problems, or problems highly con-
strained, and then the evaluation of the wasted space helps efficiently to detect dead-ends
and to prune the search space. Compared to the other approaches, the increase-height strat-
egy gives good results on At problems. These problems were proposed by E. Hopper and
B.C.H. Turton [12]. They are particular in that their optimal solutions are perfect packings.
In this case, the increase search strategy starts with the optimal height, and then the algo-
rithm solves a unique instance. Furthermore, there must be no wasted space in the bin for this
instance. Then the procedure backtracks whenever a dimension of the free space cannot be
perfectly occupied with free items. The increase-height strategy produces also good results
on NGCUT problems. The best performer on the whole selection of problems is AVPT.
This approach combines many techniques. Lower and upper bounds are calculated, these
last ones using the GRASP algorithm[1]. Then a branch and bound procedure determines
the optimal height. In many cases the lower and upper bounds which are computed in the
first phase coincide, and then there is no need to call the branch and bound procedure. In the
other cases, the optimality is not always established before the time limit. When the number
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of items is large these techniques are very efficient, while our search procedure tends to per-
form huge explorations. On the other side, when the problems are small but hard, the size
of the search tree is bounded, and the techniques employed in our approach are efficient to
avoid redundant explorations and to capture symmetries. In fact when there are many items,
memorizing the profiles becomes inappropriate since the number of subsets becomes very
large, and knapsack computations become very costly. Even with a good amount of memory
we were not able, for example, to solve the problems beng; when i is greater than 2, while
AVPT or ST easily solve all beng instances.

Finally we tested our procedure on optimal rectangle packing problems. Table 5 com-
pares the CPU times that we obtained with those of Huang and Korf [13], on oriented equal-
perimeter benchmark (problem n consists in packing n oriented rectangles of sizes 1 X n,
2x (n—1),...,nx1in a box of minimal area). We successfully solved instances 1, 2,...,
23, and 24. We did not get equally good results on consecutive-square instances. The gen-
eral approach consists in generating all the possible bounding boxes, then in solving the
corresponding packing problems in order of increasing area, until all optimal solutions are
discovered. Column tested indicates the number of boxes which were tested, and column
opt. contains the optimal boxes. Computation times are in the format days : hours : minutes :
seconds. For instance 22 it takes 6 hours 17 minutes to prove that 51 x 40 is not a valid box,
while the optimal box 60 x 34 had been already discovered.

Instance HK13 SMP
n  tested opt. time time
42x32 . .
19 12 56 % 24 2:15 1:01
20 11 42 x 37 7:51 6:47
21 9 51x35 11:20 11:12
22 15 60x34 9:12:37 7:00:22
23 16  61x38 3:22:50:38 6:27:08
69 x 38 an.
24 18 57 % 46 18:32:41

Table 5 Computation times required on the oriented equal-perimeter benchmark

6 Conclusion

In this paper, we described a procedure to determine the feasibility of orthogonal packing
problems. The procedure is based on F. Clautiaux et al. approach [4]. It consists in solving a
relaxation of the initial problem, so as to fix the positions of the items on the horizontal axis.
Each time a solution of the relaxed problem is discovered, another procedure is called to de-
termine if this solution can be extended to a solution of the packing problem. This two-phase
strategy appears to be less costly than the generation of all the placements of the items in the
bin. We proposed a new search procedure which aims to improve this approach. Experimen-
tations on classical benchmarks show the usefulness of this procedure. The performances
are comparable to those of the best known approaches on many instances. We plan to imple-
ment the computation of more relevant bounds, in particular using DFF functions: to prove



18

S. Grandcolas, C. Pinto

the unfeasability during the search, the procedure which is used to solve the relaxed problem
could also be used to detect the unfeasability of the DFF-transformation of the problem (in
place of the continuous lower bound). The connections between the positions of the items
on the horizontal axis and the positions of the items on the vertical axis should be also inves-
tigated, so as to establish simple rules that could help to detect inconsistencies while solving
the relaxed problem.
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