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Abstra
t. We present an NP-
omplete problem de�ned by an existen-

tial monadi
 se
ond-order (EMSO) formula over fun
tional stru
tures

that:

1. is minimal under several synta
ti
 
riteria (i.e., any problem de�ned

by an EMSO formula that further restri
ts one 
riterion be
omes

PTIME or trivial even if all other 
riteria are relaxed), and

2. is unique for su
h restri
tions, up to renamings and symmetries.

Our redu
tions and proofs are surprisingly very elementary and sim-

ple in 
omparison with some re
ent similar results 
lassifying existential

se
ond-order formulas over relational stru
tures a

ording to their ability

either to express NP-
omplete problems or to express only PTIME ones.
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1 Introdu
tion and main results

1.1 Whi
h formulas express NP-
omplete problems?

In the line of Fagin's Theorem [3℄ whi
h states that existential se
ond order

logi
 (ESO) 
aptures the 
lass NP, this paper studies the following natural ques-

tion: what is (are) the most simple ESO senten
e(s) that de�ne(s) some NP-


omplete problem(s)? This question is somewhat related to two re
ent papers

[?, ?℄ that 
ompletely 
lassi�ed pre�x 
lasses of ESO over strings and graphs

(and more generally over relational stru
tures) with respe
t to their ability to

express either some NP-
omplete problems or only tra
table (i.e., PTIME) ones.

For example, it is easy to express an NP-
omplete problem over graphs, su
h as

3-
olourability, in existential monadi
 se
ond-order logi
 (EMSO) with only two

�rst-order variables. In 
ontrast, one noti
es that ESO formulas that use only

relation ESO variables and only one �rst-order variable 
an only de�ne easy (de-

generate) properties on relational stru
tures. The situation 
ompletely 
hanges

if fun
tion symbols are allowed either in the input signature or among the ESO

symbols. For example, ESO formulas with only one �rst-order variable x of one

of the forms (1-2):

(1) 9f 8x  (x; f ; E)

(2) 9U 8x  (x; f; U)
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where  is quanti�er-free, f and U are lists of unary fun
tion symbols and of

monadi
 relation symbols respe
tively, and E is a binary relation symbol, 
an

express some NP-
omplete problems. More pre
isely, [6℄ have re
ently proved

that formulas of form (1) exa
tly de�ne graph problems (su
h as the Hamiltonian


y
le problem) that are re
ognizable in nondeterministi
 linear time O(n) where

n is the number of verti
es in the graph, and [1℄ states that any problem is

linearly redu
ible to Sat i� it is linearly redu
ible to some problem expressible

by some formula of the form (2) (see also [8℄).

1.2 Minimal formulas for NP-
omplete problems

In this paper, we study the problem Min

0

de�ned by the very simple EMSO

formula '

0

of the parti
ular form (2) that follows.

Notation 1. Let '

0

denote the ff; gg-formula in 
onjun
tive normal form (CNF)

'

0

: 9U 8x  

0

(x), where  

0

is the 
onjun
tion

 

0

: (Ux _ Ufx) ^ (:Ux _ :Ufx _ :Ugx);

and f , g are unary fun
tion symbols. Let Æ

0

denote the following formula in

disjun
tive normal form (DNF) whi
h is logi
ally equivalent to '

0

:

Æ

0

: 9U 8x (Ux ^ :Ufx) _ (Ux ^ :Ugx) _ (:Ux ^ Ufx):

The problem Min

0

is de�ned as the set of �nite models hD; f; gi of '

0

, or equiv-

alently, of Æ

0

.

We shall also study the following subproblems of Min

0

:

Notation 2. The problemsMin

1

andMin

2

are resp. de�ned asMin

1

= fhD; f; gi

where f; g are permutations: hD; f; gi 2 Min

0

g, and Min

2

= fhD; f; gi su
h

that the graph G(D; f; g) is planar: hD; f; gi 2 Min

1

g, where G(D; f; g) is the

graph (V;E) de�ned by V = D and E = f(x; fx) : x 2 Dg [ f(x; gx) : x 2

Dg [ f(fx; gx) : x 2 Dg.

Our main results are the following:

Theorem 1. Min

0

and its subproblems Min

1

and Min

2

are NP-
omplete.

Theorem 2 (Minimality). '

0

(resp. Æ

0

) is, for several synta
ti
 
riteria enu-

merated in Table 1, the minimal EMSO formula in CNF (resp. in DNF) of the

form 9U 8x  (where  is quanti�er-free and x is a list of �rst-order variables)

that de�nes an NP-
omplete problem under the hypothesis P 6= NP.

Notation 3. The atoms of a formula are its atomi
 subformulas. In parti
ular,

the distin
t atoms of '

0

(or Æ

0

) are Ux, Ufx and Ugx. The length of a formula

is the total number of o

urren
es of atoms in it. The disjun
ts of a DNF formula

are 
alled its anti
lauses.
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input signature 2 unary fun
tions CNF ('

0

) number of 
lauses 2

number of EMSO symbols 1 length 5

number of FO variables 1 DNF (Æ

0

) number of anti
lauses 3

number of distin
t atoms 3 length 6

Table 1. Minimal synta
ti
 
riteria of EMSO formulas for NP-
omplete sets

Theorem 3 (Uni
ity). '

0

(resp. Æ

0

) is { up to symmetries detailed below { the

unique minimal EMSO formula in CNF (resp. in DNF) of the form 9U 8x  

that de�nes an NP-
omplete problem.

Remark 1. The symmetri
al formulas involved in Theorem 3 are obtained by

any permutation of terms x, fx and gx and of U and :U in '

0

(resp. Æ

0

).

1.3 Minimal formulas for #P-
omplete problems

Besides NP-
ompleteness, another important 
on
ept of the theory of 
omplex-

ity is #P-
ompleteness [10℄. It is also natural to look for a minimal logi
al

formula that de�nes some #P-
omplete problem. In this regard, it is well known

that the generi
 redu
tion from any NP problem to Sat 
an (easily) be made

parsimonious with a bije
tive and PTIME-
omputable 
orresponden
e between

solutions. That means that problem Sat not only \simulates" the de
ision pro-


ess of any problem in NP but also \reprodu
es" the number of its solutions and

the \stru
ture" of this set of solutions.

Notation 4. For any problem M in NP, let us denote by #M the \natural"


ounting problem asso
iated to M, i.e., the problem of 
ounting its \natural"

solutions. E.g., #Sat is the fun
tion that asso
iates with ea
h Sat instan
e F

the number of assignments I su
h that I j= F ; similarly, #Min

1

is the fun
tion

whi
h asso
iates to ea
h instan
e S = hD; f; gi of Min

1

the number #fU � D :

(S; U) j= 8x  

0

(x)g.

We believe that:

Conje
ture 1. There exists no parsimonious redu
tion from #Sat to #Min

1

(resp. #Min

2

).

Nevertheless, we prove in this paper that:

Theorem 4. There is some weakly parsimonious redu
tion from #Sat to #Min

1

(resp. #Min

2

).

Re
all that for two 
ounting problems #A and #B, a weakly parsimonious

redu
tion from #A to #B is an ordered pair (r; �) where r is a PTIME redu
tion

from A to B and � is a PTIME-
omputable fun
tion valued in positive integers

su
h that for ea
h instan
e w of A, we have #fS : S is a solution of problem A

for wg = �(w) �#fs : s is a solution of problem B for r(w)g.
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In regard to Conje
ture 1 
on
erning Formula '

0

, it is natural to look for

another simple EMSO formula de�ning a problem to whi
h Sat (and hen
e any

NP problem) parsimoniously redu
es. Let '

nand

denote the ff; gg-formula:

'

nand

: 9U 8x  

nand

(x), where  

nand

is the \NAND" formula

 

nand

: Ux () :(Ufx ^ Ugx);

whi
h is equivalent to the 
onjun
tion of 
lauses:

(Ux _ Ufx) ^ (Ux _ Ugx) ^ (:Ux _ :Ufx _ :Ugx):

Clearly,  

nand

(resp. '

nand

) implies  

0

(resp. '

0

). '

nand

de�nes the following

problems:

Notation 5. The problems Nand

1

and Nand

2

are resp. de�ned as Nand

1

=

fhD; f; gi where f; g are permutations of the �nite set D: hD; f; gi j= '

nand

g,

and Nand

2

= fhD; f; gi su
h that f; g are permutations of the �nite set D and

the graph G(D; f; g) is planar: hD; f; gi j= '

nand

g.

In 
ontrast to Conje
ture 1, we 
an prove that:

Theorem 5. (i) #Sat parsimoniously redu
es to #Nand

1

(resp. #Nand

2

).

(ii) If Conje
ture 1 holds and P 6= NP, then '

nand

is (up to symmetries) the

unique minimal EMSO formula for whi
h (i) holds, i.e., that de�nes a problem

over permutation stru
tures hD; f; gi to whi
h #Sat parsimoniously redu
es.

Surprisingly, our 
ompleteness proofs are rather simple and the redu
tions

involved in Theorems 1 and 5 are essentially the same one redu
tion � : F 7!

S(F ) des
ribed in the next se
tion.

2 Proof of the 
ompleteness results

2.1 The stru
tures involved

Let us re
all the three kinds of instan
es of our problems.

De�nition 1. A fun
tion stru
ture is a �nite stru
ture hD; f; gi where f; g :

D �! D are unary fun
tions. A fun
tion stru
ture hD; f; gi is a permutation

stru
ture (resp. is a planar permutation stru
ture) if f; g are permutations of D

(resp. are permutations of D su
h that the graph G(D; f; g) is planar).

Remark 2. A permutation stru
ture is naturally given by its f - and g-
ir
uits.

De�nition 2 (Planar formula and Plan-Sat). Let F be a propositional

formula in CNF. Let G(F ) denote the following bipartite graph (V;E) where

{ V is the disjoint union of the set of variables and the set of 
lauses of F ;

{ E is the set of pairs (v; C) su
h that v is a variable that o

urs in 
lause C.

F is a planar formula if G(F ) is a planar graph, and Plan-Sat is de�ned as

the satis�ability problem of planar formulas.

In our proofs of 
ompleteness, we will use the NP-
omplete problemPlan-Sat [9℄.

4



"pending"  g−edges

The gadget True

"pending"  g−edges

TrueTrue True

j
C

j
C

j
C

j
C

nC
j

True

nC
j

nC
j

nC
j

nC
j

nx
i

i
x

nx
i

nx
i

nx
i

nx
i i

x
i

x
i

x
i

x

True True

j
C

True

i
x

i
x

j
C

f−edge
g−edge

4

34 2

3

1 0

2 1

........ ................

........ ........ ........ ........ ........ ........ ........ ........

1122

3

3445 5

The variable        has 5 occurrences. The occurrence 3  of      occurs positively in the clause

The clause        has length 4

True

α

β

γ

Fig. 1. The gadget True and the redu
tion around variable x

i

and 
lause C

j

2.2 A gadget

We are going to des
ribe a redu
tion � : F 7! S(F ) that asso
iates to ea
h Sat

(resp. Plan-Sat) instan
e F a permutation stru
ture S(F ) that 
ontains many

o

urren
es of the following gadget denoted True.

De�nition 3. True or True(�; �; 
) is the gadget depi
ted on the left of Fig. 1.

The symbolization means that the gadget True plays the rôle of the Boolean


onstant \true" (or \1"). More formally, the following lemma expresses that in

any 
ase, U(
) 
an and should be true whereas the value of U(g
) (the \pending"

g-edge of 
) is free.

Lemma 1. Let True(�; �; 
) be a gadget in
luded in a permutation stru
ture

S = hD; f; gi and U : D �! f0; 1g be a monadi
 predi
ate

1

.

1. If (S; U) j= '

0

then we have U(�) = 1, U(�) = 0 and U(
) = 1;

2. Conversely: if U(�) = 1, U(�) = 0 and U(
) = 1, then the expanded stru
-

ture (True; U) satis�es '

nand

(and hen
e '

0

); in other words, '

nand

(x) is

satis�ed by ea
h element x = �; �; 
 independently of the value of U(g
).

Proof. Easy and left to the reader. ut

2.3 Our redu
tion

Let us now 
onstru
t our redu
tion � : F 7! S(F ) where F is a Sat (resp.

Plan-Sat) instan
e, i.e., a 
onjun
tion of 
lauses F = C

1

^ C

2

^ � � � ^ C

q

. In

1

For 
onvenien
e, we 
onfuse truth values \true" and \false" with 0 and 1 and assim-

ilate a monadi
 predi
ate U � D to its 
hara
teristi
 fun
tion U : D �! f0; 1g.
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the des
ription of the permutation stru
ture S(F ), we freely make use of the

following notation:

Notation 6. Whenever there exists some gadget True(�; �; 
) su
h that g(x) =


 and g(
) = y, we will often write g(x) = True and g(True) = y by 
ommodity.

Let us now des
ribe the f - and g-
ir
uits of our permutation stru
ture S(F ):

{ For ea
h variable x

i

with r o

urren
es in F , 
onstru
t the f -
ir
uit:

(x

1

i

; nx

1

i

; x

2

i

; nx

2

i

; � � � ; x

r�1

i

; nx

r�1

i

; x

r

i

; nx

r

i

);

where both verti
es x

k

i

, nx

k

i


orrespond to the k

th

o

urren
e of x

i

in F .

{ For ea
h 
lause C

j

= �

1

_� � �_�

`

in F , 
onstru
t the f -
ir
uit of odd length:

(nC

`

j

; C

`

j

; nC

`�1

j

; C

`�1

j

; � � � ; nC

1

j

; C

1

j

; nC

0

j

);

where the C

k

j

and nC

k

j

are new elements 
orresponding to the \pre�x" of

length k of the 
lause C

j

de�ned as pre�x

k

(C

j

) = �

1

_� � �_�

k

; ALso 
onstru
t

the ` + 1 g-
ir
uits (nC

k

j

;True) for k = 0; 1; � � � ; ` using ` + 1 new distin
t

gadgets True.

{ If the k

th

literal of C

j

is the h

th

o

urren
e { resp. negation of the h

th

o

urren
e { of x

i

, 
onstru
t the g-
ir
uits (C

k

j

; nx

h

i

;True) and (x

h

i

;True) {

resp. (C

k

j

; x

h

i

;True) and (nx

h

i

;True) { using two new distin
t gadgets True.

This 
ompletes the des
ription of S(F ) whi
h is represented in Fig. 1. The

following lemma is obvious by the 
onstru
tion of S(F ).

Lemma 2. F is a planar formula i� S(F ) is a planar permutation stru
ture.

2.4 Properties of the redu
tion

The following fa
t whose proof is straightforward will be useful in our study of

the f -
ir
uits of S(F ) that 
orrespond to the variables (resp. 
lauses) of F .

Fa
t 1. Let S = hD; f; gi be a permutation stru
ture and U : D �! f0; 1g be

a monadi
 predi
ate su
h that (S; U) j= 8x  

0

(x). Then, for every a 2 D su
h

that (S; U) j= U(ga) (i.e., U(ga) = 1), it holds U(a) = 1� U(fa).

Lemma 3. If S(F ) satis�es '

0

then F is satis�able.

In order to prove Lemma 3, we need the following two 
laims:

Claim 1 (Existen
e of a witness literal for ea
h 
lause). Let U be a

predi
ate su
h that (S(F ); U) j= 8x  

0

(x). For ea
h 
lause C

j

, there exists at

least one literal � in C

j

for whi
h it holds: U(nx

h

i

) = 0 if � = x

i

, and U(x

h

i

) = 0

if � = :x

i

, where � is the h

th

o

urren
e of x

i

.
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Claim 2 (Coheren
e of o

urren
es of the same variable). Let U be a

predi
ate su
h that (S(F ); U) j= 8x  

0

(x). For ea
h variable x

i

o

urring r

times, it holds:

U(x

1

i

) = 1� U(nx

1

i

) = U(x

2

i

) = 1� U(nx

2

i

) = � � � = U(x

r

i

) = 1� U(nx

r

i

):

We �rst prove Claims 1 and 2, and then dedu
e Lemma 3.

Proof (of Claim 1). Assume that the 
laim is false. Then there is a 
lause C

j

su
h that for ea
h literal �, it holds U(nx

h

i

) = 1 if � = x

i

and U(x

h

i

) = 1 if

� = :x

i

. This implies U(ga) = 1 for ea
h element a of the f -
ir
uit of C

j

, and

hen
e U(a) = 1� U(fa) by Fa
t 1, whi
h is impossible sin
e the length of this

f -
ir
uit is odd. ut

Proof (of Claim 2). It is an immediate 
onsequen
e of Fa
t 1, applied to ea
h

element a of the f -
ir
uit of x

i

sin
e we always have g(a) = True, and thus

U(ga) = 1. ut

Proof (of Lemma 3). De�ne the assignment I of the variables F as I(x

i

) =

U(x

h

i

) = 1 � U(nx

h

i

), for ea
h variable x

i

and any h = 1; 2; � � � ; r, whi
h is


oherent by Claim 2. Claim 1 ensures that in ea
h 
lause C

j

of F , there is some

literal � su
h that I(�) = 1. Hen
e, I j= C

j

and I j= F . ut

The following lemma states the most pre
ise property of our redu
tion � :

F 7! S(F ).

Lemma 4. There is a bije
tive 
orresponden
e I 7! U

I

of the set of satisfying

assignments fI : I j= Fg onto the set of monadi
 predi
ates fU : (S(F ); U) j=

8x  

nand

(x)g.

For ea
h I su
h that I j= F , let us 
onstru
t its asso
iated monadi
 predi
ate

U

I

, on the domain D of S(F ). The 
orre
tion will be ensured by Claim 3 and

its 
onverse Claim 4.

{ Set U

I

(�) = 1, U

I

(�) = 0 and U

I

(
) = 1 for ea
h gadget True(�; �; 
) in

S(F ): this is justi�ed by Lemma 1;

{ For ea
h variable x

i

of F , set U

I

(x

h

i

) = I(x

i

) and U

I

(nx

h

i

) = 1� I(x

i

), for

ea
h h;

{ For ea
h 
lause C

j

= �

1

j

_ � � �_�

`

j

, set U

I

(nC

0

j

) = 1, and for k = 1; � � � ; `, set

U

I

(C

k

j

) = value(pre�x

k

(C

j

); I), and U

I

(nC

k

j

) = 1 � value(pre�x

k

(C

j

); I),

where pre�x

k

(C

j

) = �

1

j

_ � � � _ �

k

j

and in parti
ular C

j

= pre�x

`

(C

j

).

In the following, we essentially use the well-known fa
t that all the Boolean


onne
tives 
an be expressed by means of the NAND one only. More pre
isely,

1� v = NAND(v; 1) and OR(v; v

0

) = NAND(1� v; 1� v

0

).

Claim 3. (S(F ); U

I

) j= 8x  

nand

(x).
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Proof. For ea
h element a of the f -
ir
uit of any variable x

i

, we have U

I

(ga) = 1

and U

I

(a) = 1�U

I

(fa), and hen
e (S(F ); U

I

) j= U(a) () NAND(U(fa); U(ga)).

For every 
lause C

j

of length `, one easily obtains the following equalities for

k = 1; � � � ; ` if C

k

j

= C

k�1

j

_ x

h

i

:

{ U

I

(nC

k

j

) = 1� U

I

(C

k

j

) = NAND(U

I

(C

k

j

); 1), and

{ U

I

(C

k

j

) = NAND(U

I

(nC

k�1

j

); U

I

(nx

h

i

));

and similarly in the 
ase C

k

j

= C

k�1

j

_ :x

h

i

. This proves (S(F ); U

I

) j=  

nand

(a)

for every element a 6= nC

0

j

in the f -
ir
uit of C

j

. Finally, this also holds for

a = nC

0

j

sin
e U

I

(nC

`

j

) = value(:C

j

; I) = 0 and, as a 
onsequen
e, U

I

(nC

0

j

) =

1 = NAND(U

I

(nC

`

j

); 1) as required. This 
ompletes the proof of Claim 3. ut

It remains to prove the 
onverse of Claim 3.

Claim 4. Let U be a monadi
 predi
ate su
h that (S(F ); U) j= 8x  

nand

(x).

Then there is an assignment I, of 
ourse unique, su
h that U = U

I

and I j= F .

Proof. It is a variant of the proof of Lemma 3 and is left to the reader. This


ompletes the proof of Lemma 4. ut

Lemmas 2, 3 and 4 together imply the following:

Corollary 1. (i) Sat (resp. Plan-Sat) redu
es to problem Min

1

(resp. Min

2

)

by the redu
tion � : F 7! S(F ). (ii) #Sat (resp. #Plan-Sat) parsimoniously

redu
es to problem #Nand

1

(resp. #Nand

2

).

So, we have proved Theorems 1 and 5(i), by making use of the known result

that #Sat parsimoniously redu
es to #Plan-Sat [9℄.

A 
areful analysis of our redu
tion � : F 7! S(F ) from Sat (Plan-Sat)

to Min

1

(Min

2

) shows that the only part of S(F ) where this redu
tion is not

parsimonious are the f -
ir
uits of the 
lauses of F when at least two literals of

some 
lause of F are true together. On the other hand, it is known that the

problem

1

3

-Sat (also denoted one-in-three-SAT, see [4℄) and its planar restri
-

tion Plan-

1

3

-Sat de�ned below are equivalent to Sat and Plan-Sat under

parsimonious redu
tions (see [7℄).

De�nition 4. Let

1

3

-Sat (resp. Plan-

1

3

-Sat) denote the satis�ability problem

of a 
onjun
tion of

1

3

-
lauses (resp. planar

1

3

-
lauses) of the form

1

3

(a; b; 
) whose

meaning is \exa
tly one of the three variables a; b; 
 is true".

Theorem 4 is a straightforward 
onsequen
e of the following lemma:

Lemma 5. #

1

3

-Sat (resp. #Plan-

1

3

-Sat) redu
es to #Min

1

(resp. #Min

2

)

under a weakly parsimonious redu
tion.
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Proof. Let F 7! F

0

be the trivial parsimonious and planarity-preserving redu
-

tion from

1

3

-Sat (resp. Plan-

1

3

-Sat) to Sat (resp. Plan-Sat) that repla
es

every

1

3

-
lause

1

3

(a; b; 
) by the logi
ally equivalent 
onjun
tion

(a _ b _ 
) ^ (:a _ :b) ^ (:b _ :
) ^ (:
 _ :a):

One noti
es that in ea
h 
lause of this 
onjun
tion, ex
ept one of length two, e.g.

C = :a_:b, exa
tly one literal is true and both literals of C are true. Let us now


onsider the 
omposed redu
tion �

0

: F 7! S(F

0

) from

1

3

-Sat (Plan-

1

3

-Sat) to

Min

1

(Min

2

). If F 
ontains q

1

3

-
lauses then it holds

#fU : (S(F

0

); U) j= 8x  

0

(x)g = 2

q

�#fI : I j= Fg:

This is easily justi�ed by a 
areful analysis of the f -
ir
uits of 
lauses (of F

0

)

in S(F

0

): one sees that ea
h

1

3

-
lause of F gives exa
tly 2 \lo
al 
on�gurations"

of the (union of four) f -
ir
uits of the four 
orresponding 
lauses of F

0

. This

�nishes the proof of Lemma 5 and hen
e of Theorem 4. ut

3 Proofs of minimality and uni
ity

3.1 Minimality of '

0

and Æ

0

in Theorem 2

W.l.g., for the sake of simpli
ity, we only 
onsider EMSO formulas without equal-

ity, and without 
omposition of fun
tions, of the form: ' : 9U 8x  , where U

(resp. x) is a list of monadi
 relation symbols (resp. �rst-order variables) and  

is quanti�er-free.

Proof.

{ Minimality of the input signature (= 2 unary fun
tion symbols): A famous

theorem of Cour
elle [2℄, asserts that any MSO property of bounded tree-

width stru
tures 
an be 
he
ked in deterministi
 linear time. In parti
ular,

any EMSO property of �-stru
tures with � = ff; U

1

; � � � ; U

k

g where f is

a unary fun
tion symbol and U

1

; � � � ; U

k

are monadi
 relation symbols is


he
kable in linear time.

{ Minimality of the number of EMSO symbols (= 1): Immediate sin
e any

�rst-order (FO) property is AC

0

and thus is PTIME.

{ Minimality of the number of FO symbols (= 1): trivial.

{ Minimality of the number of 
lauses in '

0

(= 2): If an ESO formula ' in

CNF has only one 
lause then it de�nes a trivial \yes"-problem.

{ Minimality of the length of '

0

(= 5): If the length of ' in CNF is at most 4

then ' either: (i) 
ontains only 
lauses of length at most 2, or (ii) 
ontains

only one 
lause (of length 3 or 4), or (iii) 
ontains exa
tly one 
lause of

length 3 and one 
lause of length 1.

In 
ase (i), ' is ESO-Krom and, as a 
onsequen
e, de�nes a PTIME problem

as proved in [5℄. In 
ase (ii), ' de�nes a trivial \yes-problem". Finally, in


ase (iii), one observes that the 
lause of length 3 either 
ontains at most

one positive literal or 
ontains at most one negative literal. Hen
e, ' is

either ESO-Horn or ESO-Anti-Horn, and thus de�nes in both 
ases a PTIME

problem as proved in [5℄.
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{ Minimality of the number of distin
t atoms (= 3): If ' in CNF 
ontains at

most 2 distin
t atoms, then its 
lauses are trivially of length at most 2, and

' is ESO-Krom.

{ Minimality of the number of anti
lauses in Æ

0

(= 3): Noti
e that any formula

' in DNF that 
ontains at most 2 disjun
ts is equivalent to a CNF formula

that 
onsists of 
lauses of length at most 2.

{ Minimality of the length of Æ

0

in DNF (= 6): If ' in DNF 
ontains an

anti
lause of length 1, then it is a trivial \yes-problem". Therefore, if ' in

DNF de�nes an NP-
omplete problem then ' 
onsists of at least 3 anti
lauses

of length at least 2.

This 
ompletes the proof of minimality for the eight 
riteria of Table 1. ut

3.2 Uni
ity up to symmetries of '

0

and Æ

0

in Theorem 3

Let us prove the uni
ity of '

0

(the proof of Æ

0

is similar). Let ' be an EMSO

formula in CNF, without equality, that satis�es the 
onditions of Table 1 and

de�nes an NP-
omplete problem over permutation stru
tures hD; f; gi. (The

proof is similar but somehow longer in 
ase of fun
tion stru
tures.) ' is of the

form 9U 8x  (f; g; U; x), where  is a 
onjun
tion of two 
lauses C

1

and C

2

with

jC

1

j+ jC

2

j = 5 and jC

1

j < jC

2

j.

Proof. One noti
es that: (i) one 
lause 
onsists of positive literals and the

other one 
onsists of negative literals: otherwise, ' would de�ne a trivial \yes-

problem", and (ii) jC

1

j = 2 and jC

2

j = 3: otherwise, C

1

would be unitary and '

would de�ne a trivial \no-problem" sin
e 8x C

1

would be equivalent to 8x Ux

or 8x :Ux (be
ause f and g are permutations) and would 
ontradi
t 8x C

2

by point (i). These two points imply that ' should be one of the following two

forms '

0

or '

0

0

up to permutations of f and g and of U and :U :

'

0

(f; g) : 9U 8x (Ux _ Ufx) ^ (:Ux _ :Ufx _ :Ugx)

'

0

0

(f; g) : 9U 8x (Ugx _ Ufx) ^ (:Ugx _ :Ufx _ :Ux):

Formulas '

0

and '

0

0

essentially de�ne the same problem over permutation stru
-

tures (resp. planar permutation stru
tures) hD; f; gi: By repla
ing x by g

�1

x in

the matrix of the formula '

0

, we immediately get the equivalen
e:

hD; f; gi j= '

0

(f; g) () hD; f

0

; g

0

i j= '

0

0

(f

0

; g

0

);

where f

0

= g

�1

and g

0

= fg

�1

.

This also makes sense for planar permutation stru
tures by noti
ing that

G(D; f; g) is planar i� G(D; f

0

; g

0

) is planar. This 
ompletes the proof of Theo-

rem 3. ut

It remains to prove Theorem 5(ii) that we reformulate more pre
isely as

follows: Assume Conje
ture 1 and P 6= NP. Then '

nand

is (up to permutations

of x, fx, gx and of U and :U) the unique minimal EMSO ff; gg-formula in
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CNF of the form 9U 8x  (x) with atoms Ux, Ufx and Ugx that de�nes a

problem over permutation stru
tures to whi
h #Sat parsimoniously redu
es.

More pre
isely, '

nand

has a minimal number of 
lauses (= 3), and a minimal

length (= 7).

3.3 Minimality of '

nand

in Theorem 5(ii)

Proof.

{ Minimality of the number of 
lauses (= 3): Clearly, any EMSO formula of the

required form that de�nes an NP-
omplete problem with exa
tly two 
lauses

has exa
tly one purely negative 
lause and one purely positive 
lause, and

has at least one 
lause of length 3 and no 
lause of length 1; so, the other one

has length 2 or 3. This gives only two possible forms: our minimal formula

'

0

(and its symmetri
al variants), and '

nae

de�ned as:

'

nae

: 9U 8x  

nae

(x), where  

nae

is the \not-all-equal" formula

 

nae

: (Ux _ Ufx _ Ugx) ^ (:Ux _ :Ufx _ :Ugx):

One easily sees that for any fun
tion stru
ture S, the number #fU : (S; U) j=

8x  

nae

(x)g is even be
ause  

nae

is invariant by inversion of U and :U . So,

no redu
tion from Sat to the problem de�ned by '

nae

(if su
h a polynomial

redu
tion exists) 
an be parsimonious with the standard way of 
ounting

solutions.

{ Minimality of the length (= 7): It is a dire
t 
onsequen
e of the fa
t that

there should be at least two 
lauses ea
h of length at least 2, and at least

one of length 3. ut

3.4 Uni
ity of '

nand

in Theorem 5(ii)

Proof. Clearly, any formula that meets our minimality 
onditions, i.e., that has

three 
lauses and length 7, has exa
tly one 
lause of length 3 and two 
lauses of

length 2. Moreover, one noti
es that:

(i) At least one 
lause is purely positive and at least one is purely negative;

(ii) No 2-
lause subsumes the 3-
lause;

(iii) Ea
h 2-
lause must disagree with the 3-
lause on the sign of every literal:

otherwise, if we write the 3-
lause as (`

1

_ `

2

_ `

3

), either the 2-
lause is of

the form (`

1

_ `

2

) and then its subsumes the 3-
lause, or the 2-
lause is of

the form (`

1

_ `

2

) and then a resolution step over `

1

indu
es the 2-
lause

(`

2

_ `

3

) that in turn subsumes the 3-
lause. This 
ontradi
ts (ii);

(iv) The 2-
lauses have exa
tly one atom in 
ommon: They 
learly have at least

one sin
e there are only three atoms available. Now, if they have two, they

disagree on the sign of either one literal or two literals. If we have (`

1

_ `

2

)^

(`

1

_ `

2

), then a resolution step over `

2

indu
es the 1-
lause (`

1

). If we have

(`

1

_ `

2

) ^ (`

1

_ `

2

), then `

1

() `

2

and the 3-
lause redu
es either to a

2-
lause or to \true" by repla
ing `

1

by `

2

;
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(v) The 3-
lause must be monotone. Otherwise, by (i), the two 2-
lauses must be

monotone of opposite sign: Let then " be the majoritary sign of the 3-
lause.

The 2-
lause of sign " 
annot disagree on the sign of every literal with the

3-
lause, sin
e this latter has only one literal of sign ". This 
ontradi
ts (iii);

(vi) Both 2-
lauses are monotone, of the same sign, opposite to the sign of the

3-
lause: This is a dire
t 
onsequen
e of (iii) and (v).

Clearly, Remarks (iv), (v) and (vi) together leave exa
tly  

nand

and its symmet-

ri
al variants as the only 
andidates. ut

4 Con
lusion and open problems

Exhibiting \the" minimal EMSO formula that de�nes an NP-
omplete problem

over fun
tion stru
tures is the main 
ontribution of this paper. This also hold for

restri
tions to permutations stru
tures or even to planar permutation stru
tures.

A striking point is the uni
ity (up to symmetries) of our formula. This delineates

a very neat frontier in logi
 between NP-
omplete problems and tra
table ones.

There remain several open problems:

The main one is Conje
ture 1. Its proof, if true, seems very diÆ
ult ex
ept

if it 
an be shown that the 
ounting problem #Min

1

(resp. #Min

2

) has some


ombinatorial property, to be 
ompared, e.g., to the known fa
t that the number

of Hamiltonian 
y
les visiting an arbitrary edge in a 
ubi
 graph is even (see [?℄).

Another interesting obje
tive 
onsists in looking for a ne
essary and suÆ
ient

de
idable 
ondition for whi
h any EMSO formula of the form 9U 8x  (U; f; x)

and of unary signature f expresses an NP-
omplete problem over f-stru
tures

(resp. over permutation f -stru
tures, or over planar permutation f -stru
tures.)

Other problems of less importan
e are the following: Does the EMSO formula

'

nae

of subse
tion 3.3 de�ne a PTIME or NP-
omplete problem over permutation

stru
tures? Noti
e that '

nae

de�nes a trivial \yes"-problem over planar permuta-

tion stru
tures by the Four-Colors Theorem in planar graphs [?℄. Hint: Asso
iate

to some 4-
oloring C : D �! f0; 1; 2; 3g of any planar planar graph G(D; f; g)

the monadi
 predi
ate U : D �! f0; 1g de�ned by U(x) = C(x) mod 2.

Analogue of Conje
ture 1 for fun
tion stru
tures: Is there a parsimonious

redu
tion from #Sat to #Min

0

?
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