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Abstract

It is conjectured that there exists no linear reduction from the Hamiltonian Cycle
problem to the Satisfiability problem. In contrast to the general case, we show that
the planar Hamiltonian cycle problem is linearly and parsimoniously reducible to
the planar Satisfiability problem. Since the converse is already known to be true,
the two problems are equivalent under linear parsimonious reductions.
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1 Introduction

Many NP-complete problems, (e.g., SAT, 3-COL, KERNEL, 3DM) are not
only equivalent under polynomial reductions, but also under linear reduc-
tions, i.e. reductions computable in linear time on Random Access Machine
[3-6].1 Moreover, the transformations can often be made parsimonious, i.e.
such that they realize a one-to-one correspondence between the solutions of
the instances. In this note, as in [1,2], we investigate ezact (i.e. linear and
parsimonious) reductions. The interest of such a notion is that if two prob-
lems A and B are eractly equivalent, i.e. exactly reducible each other, then
A and B have exactly the same complexity according to: (a) the number of
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their solutions, and (b) the enumeration of their solutions (delays between two
consecutive solutions are the same up to a multiplicative constant).

Given a connected graph G, the HAM problem asks whether a (so called Hamil-
tonian) cycle can visit each vertex of G exactly once. There are many variants
of this problem: the graph G may be directed or undirected, we may want a
path instead of a cycle, and its ends may be specified or not. If G is planar,
this induces as many variants for the PLAN-HAM problem. In [1], we showed
that all the cited HAM (resp. PLAN-HAM) variants are ezactly equivalent.

Given a formula F' of the propositional logic in conjunctive normal form, the
SAT problem asks whether F' has a satisfying assignment. A SAT instance
can be seen as a bipartite graph problem, in which there is one vertex v, per
variable z, one vertex v, per clause ¢, and one edge (v,,v.) per occurrence of
x or -z in c. If this graph is planar, then we have a PLAN-SAT instance.

Theorem 1 PLAN-SAT and PLAN-HAM are exactly equivalent, i.e.:
(a) PLAN-SAT is exactly reducible to PLAN-HAM.
(b) PLAN-HAM is exactly reducible to PLAN-SAT.

We showed (a) in [1], and we show (b) in this note. The result is surprising
because SAT is believed to be too weak [9] to linearly express the hamiltonicity
property in the general case (which contrasts with its NQL-completeness [11]).

(a) apartition Cinto 2 cycles and its dual D
(b) aHamiltonian cycle C and its dual D
O primal vertices

u} G = primal edges in C
—— primal edges notin C

O m dual vertices (root faces in black)
G’ { dual edges in D
dual edges not in D

Fig. 1. A planar graph G and its dual graph G’

Here is an intuition (see Figure 1): Firstly, given a connected planar graph G,
our SAT system builds a partition C of GG into k disjoint cycles by constraining
each vertex to have exactly two incident edges in C. The second idea is to force
k =1 (i.e. that C is a Hamiltonian cycle) with the help of the dual graph G'.
C induces a structure D in G', which is the graph of faces that are left connected
by C. Lemma, 14 shows that C is a Hamiltonian cycle iff D is a forest of exactly
two trees. So, our SAT system further constrains each face but two to elect
exactly one father among its adjacent faces in the same connected component
of D. Both faces without father are the roots of the only two trees of D, but
D may still contain additional connected components that are cycles possibly
adorned with entering trees. These cycles do not elect roots, and hence they
cannot be detected by the SAT system. Fortunately, Lemma 16 shows that
any cycle in D prevents the two roots to be adjacent. So, by constraining the
roots to be adjacent, we indirectly forbid cycles in D, and we get a linear
reduction PLAN-HAM < SAT, which is even parsimonious, thanks to a trick
to fix the roots a priori. The SAT system is then easily made planar.



2 A local characterization of planar Hamiltonicity

Fact 2 (generalized Jordan curve theorem) Let C be a collection of k
disjoint simple closed curves Cy,---,Cy, lying in a sphere S. Then S\ C falls
into exactly k + 1 mazimal connected regions (or regions, for short).

We are now given a connected planar graph G(V, E, F') embedded in a sphere S,
with V' (resp. F, F) as its set of vertices (resp. edges, faces).

Definition 3 (k-Ham partition, Ham-cycle) A k-Ham partition C of G
is a collection of k disjoint simple cycles Cy(Vy, Ey), -+, Cr(Vi, Ex) in G, such
that (Vi,---, Vi) is a partition of V.. If k = 1, then C is a Ham-cycle of G. For
some fized k-Ham partition C, an edge e € E is said to be thick (resp. thin)
in G if e € UE; (resp. e ¢ UE;), 1 <i <k.

Definition 4 (dual graph) For each edge e € E with adjacent faces f; and
fo, we define ¢ = dual(e) to be a new associated edge (f1, f2), where fi
and fy are seen as vertices. We also note e = primal(e'). The dual graph
G'(V',E',F") of G, denoted dual(G), is defined as follows: V! = F, F' =V,
and E" = {dual(e),e € E}. Each vertex v' € V' is embedded in the sphere S
such that v' lies in the region R induced by its associated face f € F, and each
edge € = dual(e) € E' is embedded in S such that €' crosses e exactly once
and does not cross G elsewhere.

Definition 5 (Ham-dual) Let G' = dual(G) and C be a k-Ham partition
of G. The Ham-dual D of C is defined to be G' after removal of all edges
¢’ = dual(e) such that e is thick in G, i.e. belongs to C. The edges in D
(resp. in G' \ D) are called the thick (resp. thin) edges of G', in other words,
e’ = dual(e) is thick (thin) iff e is thin (thick). Mazimal connected components
in D are called components, for short.

From now on, we are given a k-Ham partition C in GG, along with its Ham-
dual D in G’ = dual(G).

Claim 6 D has exactly k' = k + 1 components.

PROQOF. It immediately follows from Fact 2. [

Definition 7 (C-regions) Let C be a simple cycle in G or G'. From Fact 2,
S\ C falls into two regions Ry and Ry, called the two C-regions, such that Ry,
Ry, and C' form a partition of the sphere S.

Definition 8 (C-chords, C-edges, R-edges) Let C be a simple cycle in G
or G', R be an arbitrary C-region, and e = (z,y) € E be an edge lying in



CUR such that x € C. Ify € R, then e is called an R-edge. Otherwise, y € C
and e is called a C-edge (resp. a C-chord) if e € C (resp. if e ¢ C). Note that,
if C' belongs to C, then all its C'-edges are thick, and since the cycles in C are
disjoint, all its R-edges and C-chords are thin.

(@ aCi-region R (inside Ci) without R-edge
(b) aCi-region R (outside Ci) with an R-edge e0
(c) thecyclein D described in (b) by next (e, x)
O===0 acycle Ci of a k-Ham partition
OO0 acomponent Min D

the rotation clock (e, X)

/"X the rotation next (e, X)
Fig. 2. Acyclic and cyclic components in D

Claim 9 Let C; be a cycle in C, and R be an arbitrary C;-region, such that
there does not exist any R-edge. Then the unique component M € D lying in
R is acyclic, i.e. is a tree (see Figure 2a).

PROOF. Since no R-edge lies in R and G is planar and connected, the set
Vr C V of vertices lying in R is empty. Thus, R may only contains C;-chords.
Now, suppose that M is cyclic: let C' be a cycle in M, €’ be an arbitrary edge
of C" and e = (z,y) = primal(e’'). Notice that z and y lie in the two distinct
(C'"-regions. Since exactly one of the two C’-regions does not contain C;, either
z or y must lie in R, which contradicts Vp = (. O

Claim 10 Let C; be a cycle in C, and R be an arbitrary C;-region, such that
there exists an R-edge ey € E. Then, the component M of D containing e} =
dual(eg) is cyclic (see Figures 2(b,c)).

PROOF. For any edge e = (z,y), clock(e,x) denotes the edge after e in
the clockwise order around z. Also, other(e,z) denotes y, and vice-versa.
Let I(eg) be the iteration e:=eo(x,y); loop { e:=clock(e,x); write(e);
x:=other(e,x); }. If we stop I(eg) as soon as ey is met again, then I(eg)
writes the boundary of a face f in the anti-clockwise order. This face f, de-
noted left(eg, x), is the left-hand face for an observer located at y and looking
towards x. Now, suppose that eq is an R-edge of C; with z € C. Then, the
first R-edge e met after ey in I(ep) is denoted by e = next(eg, x). Therefore,
eo and next(ep, ) share the same adjacent face f = left(eg,x).

If C; is a cycle of C, and e is an R-edge of C;, then common(e, C;) denotes the
unique common vertex of e and C'. Let J(eg, C;) be the iteration e:=eq(x,y) ;
loop { write(left(e,x),dual(e)); e:=next(e,x); x:=common(e,C;); }
until (e=eq). The loop terminates because of the invariant = € Cj;. Since each
encountered edge e shares a common face left(e, z) with next(e, z), J(eq, C;)
writes the successive vertices and edges of a cycle C' in G’ (possibly non-simple



if some articulation point z is met). Since all edges of C" are the dual edges
of R-edges, and since R-edges are always thin in G|, it follows that the edges
of C" are all thick in G'. This means that the component M lying in R and
containing e = dual(ey) also contains the cycle C'. [

From now on, an arbitrary outer-face f,,; € F' is chosen in G.

Definition 11 (interior, exterior) Let C' be a simple cycle in G, and Ry,
Ry be the two C-regions. Eractly one of them, say Ry, contains fou. Then
Ry (resp. Ry) is said to be the interior (resp. exterior) of C, and is denoted
int(C) (resp. ext(C)).

Definition 12 (nested cycles) For any two cycles C;,C; € C such that
int(C;)Cint(C;), we note C; < C; (which is read: C; is nested in Cj, or
C; nests C;). Moreover, if there is no Cj, € C such that C; < Cy, < Cj, then
we note C; = succ(C;) and brothers(C;) = {C; € C, succ(C;) = succ(C;)}.
Finally, a min-cycle (resp. maz-cycle) C; is a cycle of C which nests (resp. is
nested in) no other cycle of C.

Lemma 13 Let M be a component in D. Then M is a tree iff: (1) M lies in
the interior of a min-cycle C; of C, or (2) M lies in the exterior of a cycle C;
which is the unique mazx-cycle of C.

PROQOF. There are exactly four cases:

e If M lies in R = int(C;) and C; is a min-cycle of C, then Claim 9 applies to
C; and R, and M is a tree.

o If M lies in R = ext(C;) and C is the unique max-cycle of C, then Claim 9
applies to C; and R, and M is a tree.

e If M lies in R = ext(C;) and C; is a non-unique max-cycle of C, then since
G is planar and connected, there exists e = (x,y) € E such that x € C; and
y € C; for some max-cycle C; # C;. Since e is an R-edge, Claim 10 applies
to C; and R, and M is cyclic.

e Otherwise, M lies in ext(C;) N int(C;), for some C; = succ(C;). Since G
is planar and connected, there exists e = (z,y) € E such that x € C; and
y € C; or y € Cy, where C), € brothers(C;), h # i. In both cases, e is
an R-edge for R = ext(C;), so Claim 10 applies to C; and R, and M is
cyclic. [

Lemma 14 k =1, i.e. C is a Ham-Clycle iff D consists of exactly two trees.

PROOF. (=) : If k = 1, then let C; be the unique cycle in C: by Claim 6,
D has k' = k + 1 = 2 components M; and My, lying in int(C}) and ext(C)



respectively. Since C is both a min-cycle and the unique max-cycle in C,
Lemma 13 applies twice, and M; and M, are both trees.

(<) :If k' =2, then by Claim 6, k =k —1=1. O

Definition 15 (twin components) Two components My and My in D are
said to be twin iff the two following conditions hold: (1) both My and My are
trees, and (2) there are two vertices ri € My and ro € My, called the twin
roots of My and My, such that ry and ro are neighbor, i.e. (rq,rs) € E'.

Lemma 16 k£ =1, i.e. C is a Ham-cycle iff two twin components exist in D.

PROOF. (=) : It is an immediate consequence of Lemma 14. We only have
to exhibit two twin roots ry and ry: Choose an arbitrary edge e in the unique
cycle Cy € C, and let € = (f, g) = dual(e), such that f lies in int(C) and g
lies in ext(Cy), and set 7y = f and ry = g.

(<) : Assume M; and M, are two twin components with respective twin
roots 71 and ry. Since both components are trees, then by Lemma 13, each
one must lie either in the interior of a min-cycle or in the exterior of the unique
max-cycle. Suppose k > 1, then there are two cases:

e M, € int(C;) and M, € int(C;) where C; and C; are disjoint min-cycles in
C. Because G is planar and C; and C; are disjoint, any path from 7 to 7,
in G’ must contain an intermediate vertex lying in ext(C;) Next(C;). So, r;
and 79 are not twin roots, a contradiction.

o M; € int(C;) and M, € ext(C;) where C; is a min-cycle and Cj is the
unique max-cycle in C. Since k£ > 1, we have C; # C;. Because G is planar
and C; and C; are disjoint, any path from 7y to r, in G’ contains a third
vertex lying in ext(C;) Nint(C;). So, i and r9 are not twin roots. [

3 The reduction PLAN-HAM < PLAN-SAT

To get a parsimonious reduction, we need to fix the twin roots r; and r5 inside
two predetermined faces of GG. From the proof of Lemma 16, r; and r, may be
arbitrarily chosen among any two neighbor faces separated by a thick edge.
In order to fix such a thick edge, we choose an arbitrary vertex v € V of
any degree, and we explode it into the subgraph gadget G(v) of Figure 3b.
A one-to-one correspondence suggested by Figures 3(c,d) holds between the
Hamiltonian cycles in G before and after the substitution, and G now contains
a vertex t of degree 2 which forces its two incident edges to be thick in any
Hamiltonian cycle. Thus, r; and r, can be fixed as the two adjacent faces of t.



(a) avertex v of degree d=6
(b) the subgraph gadget G(v)
(c) apath through the vertex v
(d) corresponding path in G(v)

O vertices of degree 2

the fixed faces for the roots

Fig. 3. Explosion of a vertex of degree d = 6

For the sake of readability, we assume that the special clauses 1/N(¢y,-- -, lq)
and 2/N(ly,- -, y) are SAT subsystems that are satisfied iff exactly one (resp.
two) literal among ¢; (1 < i < d), are assigned true. Implementing them
linearly and parsimoniously with planar clauses is an easy task detailed in
Appendix A. The reduction is as follows:

e Set of variables: Each edge e € F U E’ has an associated boolean variable
thick,, which is true iff e is thick in CUD. The choice of r; and ry determines
a direction for the forest D, so each vertex f € V' of degree d has d associated
boolean variables fatherfc', one for each edge ¢’ = (f,g) € E', which is true
iff ¢ € D and g is the father of f in D.

e C is a k-Ham partition of G : For each vertex v € V of degree d, with incident
edges ey, - - -, eq, generate the constraint 2/N (thick,,,- - -, thick,,).

e D is the Ham-dual of C: For each edge e € E and ¢’ = dual(e), generate the
clauses (thick, V thick.) and (—thick, V —thick).

e Fach face other than ri and ry has exactly one father: For each vertex
f € V'of degree d, f ¢ {ry,ro}, with incident edges e}, - - -, e}, generate the

constraint 1/N(father;,1, e father;d).

e Both twin roots r1 and ry have no father: For each edge ¢’ € E’ incident to
a root r € {r,r}, generate unit clause (—father?).

e The directed Ham-dual D is consistent: For each edge ¢ = (f,g) € F',
generate the constraints ( fatherjef = thick.), ( fathergl = thick.),
(thickey = father;i' v fatherge'), and (—lfatherg, v ﬁfather;i’).

The system is linear in |G+G’| and its correctness is an immediate consequence
of Lemmas 14 and 16. Moreover, Figure 4 shows how to embed the SAT
system in each face so that it can be made planar, by using a linear number
of parsimonious PLAN-SAT crossover-boxes (this standard mechanism [7,10]
embeds one variable in each corner of a square, and forces the opposite corner
variables to have the same assignment). Thus, Theorem 1 is proved.

(hlcke,

local view of dual (G) embedded in G
local planar SAT system

&
father ¢
variable vertex

e'=dual (e) clause vertex is implicit

(represented by the hyperedge link)

0 thick

e=primal (e")

face f
(not a twin root)
parsimonious crossover-box

constraint gadgets k/N (...), for k=1 or 2
@ o o

father .
9

@)

Fig. 4. Local planar embedding of the SAT system in a face



4 Conclusion

Linear reductions allow to investigate the strong relationships between the
complexity of hard (NP-complete) problems, and hence to classify them more
precisely than polynomial or even quasi-linear reductions. Further, ezact re-
ductions allow to show that two combinatorial problems have the same com-
plexity w.r.t the structure of their set of solutions. Surprisingly, we have shown
the exact equivalence of PLAN-HAM and PLAN-SAT. We now hope to enlarge
this ezact class to many other combinatorial planar problems [2].
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APPENDIX

A Planar encoding of the constraints 1/N and 2/N

We encode the constraint 1/N(xy,---,z4) by simulating the pair of finite
boolean sequences ([ag], [zx]) where [ax] is a monotone non-increasing boolean
sequence starting with one, and where x;, = 1 iff k£ is the last rank such that
ar = 1, e.g. [ax] = [1,1,1,0,0,0] and [zx] = [0,0,1,0,0,0]. The monotonicity
of [ag] is encoded by the unit clause (a;) and the clauses (ax11 = ay),
for any & < d. The sequence [z;] is then encoded by (z; <= a4) and
(x) <= a N\ nag4q) for any k < d, which develop into the clauses (—z4V aq),
(mag V xq), (mxk Vag), (mxg V —agir), (5ag Vagyr Vog). A planar embedding
of 1/N(--+) is the chain of tetrahedrons shown in Figure A.la.

x1 x2 x3 x4 x5 xd

x1 X2 x3 x4 x5
al a2 @®@a2 a30a3 a4 ead4 a5 0 a5 ad @ ad
@ O L
(@ () qQ

al a2 a3 a4 a5 ad

(a) planar embedding for 1/N (x1, ..., xd)
(b) planar embedding for 2/N (x1, ..., xd)
® variables assigned false (example)

O variables assigned true (example)

o

@ @ parsimonious crossover-box bl b2 b3 b4
o

Fig. A.1. Planar embedding of constraints 1/N and 2/N(zy,---,z4), for d =6

The encoding of the constraint 2/N(xq,---,z4) follows the same idea. We
simulate two pairs of finite boolean sequences ([ag], [yx]) and ([bg],[2k]) the
same way as above, so that the sequences [y;] and [z;] contain exactly one
“one”. Then, we define [zy] by (7 <= vy V z) for any k < d, which develops
into (—zx V ye V 21), (—yr V 2k), (72 V ). Moreover, we want y; = 1 and
z; = 1 for i # j, so we constrain the initial subsequence of ones in [ay] to
be strictly longer than the initial subsequence of ones in [b;] by adding the
clauses (ay, V —by) and (—yx V -z ) for any £ < d. A possible planar embedding
of 2/N(---) is the triple chain of tetrahedrons shown in Figure A.1b, where
d parsimonious crossover-boxes have been added in order to embed a copy of
[z] on the boundary of the outer face.



