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Abstrat

It is onjetured that there exists no linear redution from the Hamiltonian Cyle

problem to the Satis�ability problem. In ontrast to the general ase, we show that

the planar Hamiltonian yle problem is linearly and parsimoniously reduible to

the planar Satis�ability problem. Sine the onverse is already known to be true,

the two problems are equivalent under linear parsimonious redutions.

Key words: Computational Complexity, Combinatorial Problems, Planarity,

Linear Time, Parsimonious Redutions.

1 Introdution

Many NP-omplete problems, (e.g., SAT, 3-COL, KERNEL, 3DM) are not

only equivalent under polynomial redutions, but also under linear redu-

tions, i.e. redutions omputable in linear time on Random Aess Mahine

[3{6℄.

1

Moreover, the transformations an often be made parsimonious, i.e.

suh that they realize a one-to-one orrespondene between the solutions of

the instanes. In this note, as in [1,2℄, we investigate exat (i.e. linear and

parsimonious) redutions. The interest of suh a notion is that if two prob-

lems A and B are exatly equivalent, i.e. exatly reduible eah other, then

A and B have exatly the same omplexity aording to: (a) the number of

Email address: regis.barbanhon�info.uniaen.fr (R�egis Barbanhon).
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In partiular, [6℄ argues the robustness of linear time omplexity on RAMS. Other

authors [11,8℄ have studied non-deterministi quasi-linear time (NQL), involving

redutions omputable in time O(n log

O(1)

n) on Turing Mahines.
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their solutions, and (b) the enumeration of their solutions (delays between two

onseutive solutions are the same up to a multipliative onstant).

Given a onneted graphG, the HAM problem asks whether a (so alled Hamil-

tonian) yle an visit eah vertex of G exatly one. There are many variants

of this problem: the graph G may be direted or undireted, we may want a

path instead of a yle, and its ends may be spei�ed or not. If G is planar,

this indues as many variants for the PLAN-HAM problem. In [1℄, we showed

that all the ited HAM (resp. PLAN-HAM) variants are exatly equivalent.

Given a formula F of the propositional logi in onjuntive normal form, the

SAT problem asks whether F has a satisfying assignment. A SAT instane

an be seen as a bipartite graph problem, in whih there is one vertex v

x

per

variable x, one vertex v



per lause , and one edge (v

x

; v



) per ourrene of

x or :x in . If this graph is planar, then we have a PLAN-SAT instane.

Theorem 1 PLAN-SAT and PLAN-HAM are exatly equivalent, i.e.:

(a) PLAN-SAT is exatly reduible to PLAN-HAM.

(b) PLAN-HAM is exatly reduible to PLAN-SAT.

We showed (a) in [1℄, and we show (b) in this note. The result is surprising

beause SAT is believed to be too weak [9℄ to linearly express the hamiltoniity

property in the general ase (whih ontrasts with its NQL-ompleteness [11℄).

dual edges not in D
dual edges in DG’
dual vertices (root faces in black)

(a) a partition C into 2 cycles and its dual D
a Hamiltonian cycle C and its dual D(b)

primal vertices
primal edges in C
primal edges not in C

G

(b)(a)

Fig. 1. A planar graph G and its dual graph G

0

Here is an intuition (see Figure 1): Firstly, given a onneted planar graph G,

our SAT system builds a partition C of G into k disjoint yles by onstraining

eah vertex to have exatly two inident edges in C. The seond idea is to fore

k = 1 (i.e. that C is a Hamiltonian yle) with the help of the dual graph G

0

.

C indues a strutureD inG

0

, whih is the graph of faes that are left onneted

by C. Lemma 14 shows that C is a Hamiltonian yle i� D is a forest of exatly

two trees. So, our SAT system further onstrains eah fae but two to elet

exatly one father among its adjaent faes in the same onneted omponent

of D. Both faes without father are the roots of the only two trees of D, but

D may still ontain additional onneted omponents that are yles possibly

adorned with entering trees. These yles do not elet roots, and hene they

annot be deteted by the SAT system. Fortunately, Lemma 16 shows that

any yle in D prevents the two roots to be adjaent. So, by onstraining the

roots to be adjaent, we indiretly forbid yles in D, and we get a linear

redution PLAN-HAM � SAT, whih is even parsimonious, thanks to a trik

to �x the roots a priori. The SAT system is then easily made planar.
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2 A loal haraterization of planar Hamiltoniity

Fat 2 (generalized Jordan urve theorem) Let C be a olletion of k

disjoint simple losed urves C

1

; � � � ; C

k

lying in a sphere S. Then S n C falls

into exatly k + 1 maximal onneted regions (or regions, for short).

We are now given a onneted planar graphG(V;E; F ) embedded in a sphere S,

with V (resp. E, F ) as its set of verties (resp. edges, faes).

De�nition 3 (k-Ham partition, Ham-yle) A k-Ham partition C of G

is a olletion of k disjoint simple yles C

1

(V

1

; E

1

); � � � ; C

k

(V

k

; E

k

) in G, suh

that (V

1

; � � � ; V

k

) is a partition of V . If k = 1, then C is a Ham-yle of G. For

some �xed k-Ham partition C, an edge e 2 E is said to be thik (resp. thin)

in G if

e

2 [E

i

(resp.

e

=2 [E

i

), 1 � i � k.

De�nition 4 (dual graph) For eah edge e 2 E with adjaent faes f

1

and

f

2

, we de�ne e

0

= dual(e) to be a new assoiated edge (f

1

; f

2

), where f

1

and f

2

are seen as verties. We also note e = primal(e

0

). The dual graph

G

0

(V

0

; E

0

; F

0

) of G, denoted dual(G), is de�ned as follows: V

0

= F , F

0

= V ,

and E

0

= fdual(e); e 2 Eg. Eah vertex v

0

2 V

0

is embedded in the sphere S

suh that v

0

lies in the region R indued by its assoiated fae f 2 F , and eah

edge e

0

= dual(e) 2 E

0

is embedded in S suh that e

0

rosses e exatly one

and does not ross G elsewhere.

De�nition 5 (Ham-dual) Let G

0

= dual(G) and C be a k-Ham partition

of G. The Ham-dual D of C is de�ned to be G

0

after removal of all edges

e

0

= dual(e) suh that e is thik in G, i.e. belongs to C. The edges in D

(resp. in G

0

n D) are alled the thik (resp. thin) edges of G

0

, in other words,

e

0

= dual(e) is thik (thin) i� e is thin (thik). Maximal onneted omponents

in D are alled omponents, for short.

From now on, we are given a k-Ham partition C in G, along with its Ham-

dual D in G

0

= dual(G).

Claim 6 D has exatly k

0

= k + 1 omponents.

PROOF. It immediately follows from Fat 2. �

De�nition 7 (C-regions) Let C be a simple yle in G or G

0

. From Fat 2,

S nC falls into two regions R

1

and R

2

, alled the two C-regions, suh that R

1

,

R

2

, and C form a partition of the sphere S.

De�nition 8 (C-hords, C-edges, R-edges) Let C be a simple yle in G

or G

0

, R be an arbitrary C-region, and e = (x; y) 2 E be an edge lying in
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C [R suh that x 2 C. If y 2 R, then e is alled an R-edge. Otherwise, y 2 C

and e is alled a C-edge (resp. a C-hord) if e 2 C (resp. if e =2 C). Note that,

if C belongs to C, then all its C-edges are thik, and sine the yles in C are

disjoint, all its R-edges and C-hords are thin.

(b) a Ci-region R (outside Ci) with an R-edge e0

(a) a Ci-region R (inside Ci) without R-edge

the rotation next (e, x)(a)

e0

(b) (c)

the rotation clock (e, x)

(c) the cycle in D described in (b) by next (e, x) x

y

a component M in D

a cycle Ci of a k-Ham partition

Fig. 2. Ayli and yli omponents in D

Claim 9 Let C

i

be a yle in C, and R be an arbitrary C

i

-region, suh that

there does not exist any R-edge. Then the unique omponent M 2 D lying in

R is ayli, i.e. is a tree (see Figure 2a).

PROOF. Sine no R-edge lies in R and G is planar and onneted, the set

V

R

� V of verties lying in R is empty. Thus, R may only ontains C

i

-hords.

Now, suppose that M is yli: let C

0

be a yle in M , e

0

be an arbitrary edge

of C

0

and e = (x; y) = primal(e

0

). Notie that x and y lie in the two distint

C

0

-regions. Sine exatly one of the two C

0

-regions does not ontain C

i

, either

x or y must lie in R, whih ontradits V

R

= ;. �

Claim 10 Let C

i

be a yle in C, and R be an arbitrary C

i

-region, suh that

there exists an R-edge e

0

2 E. Then, the omponent M of D ontaining e

0

0

=

dual(e

0

) is yli (see Figures 2(b,)).

PROOF. For any edge e = (x; y), lok(e; x) denotes the edge after e in

the lokwise order around x. Also, other(e; x) denotes y, and vie-versa.

Let I(e

0

) be the iteration e:=e

0

(x,y); loop f e:=lok(e,x); write(e);

x:=other(e,x); g. If we stop I(e

0

) as soon as e

0

is met again, then I(e

0

)

writes the boundary of a fae f in the anti-lokwise order. This fae f , de-

noted left(e

0

; x), is the left-hand fae for an observer loated at y and looking

towards x. Now, suppose that e

0

is an R-edge of C

i

with x 2 C. Then, the

�rst R-edge e met after e

0

in I(e

0

) is denoted by e = next(e

0

; x). Therefore,

e

0

and next(e

0

; x) share the same adjaent fae f = left(e

0

; x).

If C

i

is a yle of C, and e is an R-edge of C

i

, then ommon(e; C

i

) denotes the

unique ommon vertex of e and C. Let J(e

0

; C

i

) be the iteration e:=e

0

(x,y);

loop f write(left(e,x),dual(e)); e:=next(e,x); x:=ommon(e,C

i

); g

until(e=e

0

). The loop terminates beause of the invariant x 2 C

i

. Sine eah

enountered edge e shares a ommon fae left(e; x) with next(e; x), J(e

0

; C

i

)

writes the suessive verties and edges of a yle C

0

in G

0

(possibly non-simple
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if some artiulation point x is met). Sine all edges of C

0

are the dual edges

of R-edges, and sine R-edges are always thin in G, it follows that the edges

of C

0

are all thik in G

0

. This means that the omponent M lying in R and

ontaining e

0

0

= dual(e

0

) also ontains the yle C

0

. �

From now on, an arbitrary outer-fae f

out

2 F is hosen in G.

De�nition 11 (interior, exterior) Let C be a simple yle in G, and R

1

,

R

2

be the two C-regions. Exatly one of them, say R

2

, ontains f

out

. Then

R

1

(resp. R

2

) is said to be the interior (resp. exterior) of C, and is denoted

int(C) (resp. ext(C)).

De�nition 12 (nested yles) For any two yles C

i

; C

j

2 C suh that

int(C

i

)�int(C

j

), we note C

i

< C

j

(whih is read: C

i

is nested in C

j

, or

C

j

nests C

i

). Moreover, if there is no C

h

2 C suh that C

i

< C

h

< C

j

, then

we note C

j

= su(C

i

) and brothers(C

i

) = fC

j

2 C; su(C

j

) = su(C

i

)g.

Finally, a min-yle (resp. max-yle) C

i

is a yle of C whih nests (resp. is

nested in) no other yle of C.

Lemma 13 Let M be a omponent in D. Then M is a tree i�: (1) M lies in

the interior of a min-yle C

i

of C, or (2) M lies in the exterior of a yle C

j

whih is the unique max-yle of C.

PROOF. There are exatly four ases:

� If M lies in R = int(C

i

) and C

i

is a min-yle of C, then Claim 9 applies to

C

i

and R, and M is a tree.

� If M lies in R = ext(C

j

) and C

j

is the unique max-yle of C, then Claim 9

applies to C

j

and R, and M is a tree.

� If M lies in R = ext(C

i

) and C

i

is a non-unique max-yle of C, then sine

G is planar and onneted, there exists e = (x; y) 2 E suh that x 2 C

i

and

y 2 C

j

for some max-yle C

j

6= C

i

. Sine e is an R-edge, Claim 10 applies

to C

i

and R, and M is yli.

� Otherwise, M lies in ext(C

i

) \ int(C

j

), for some C

j

= su(C

i

). Sine G

is planar and onneted, there exists e = (x; y) 2 E suh that x 2 C

i

and

y 2 C

j

or y 2 C

h

where C

h

2 brothers(C

i

), h 6= i. In both ases, e is

an R-edge for R = ext(C

i

), so Claim 10 applies to C

i

and R, and M is

yli. �

Lemma 14 k = 1, i.e. C is a Ham-Cyle i� D onsists of exatly two trees.

PROOF. (=)) : If k = 1, then let C

1

be the unique yle in C: by Claim 6,

D has k

0

= k + 1 = 2 omponents M

1

and M

2

, lying in int(C

1

) and ext(C

1

)
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respetively. Sine C

1

is both a min-yle and the unique max-yle in C,

Lemma 13 applies twie, and M

1

and M

2

are both trees.

((=) : If k

0

= 2, then by Claim 6, k = k

0

� 1 = 1. �

De�nition 15 (twin omponents) Two omponents M

1

and M

2

in D are

said to be twin i� the two following onditions hold: (1) both M

1

and M

2

are

trees, and (2) there are two verties r

1

2 M

1

and r

2

2 M

2

, alled the twin

roots of M

1

and M

2

, suh that r

1

and r

2

are neighbor, i.e. (r

1

; r

2

) 2 E

0

.

Lemma 16 k = 1, i.e. C is a Ham-yle i� two twin omponents exist in D.

PROOF. (=)) : It is an immediate onsequene of Lemma 14. We only have

to exhibit two twin roots r

1

and r

2

: Choose an arbitrary edge e in the unique

yle C

1

2 C, and let e

0

= (f; g) = dual(e), suh that f lies in int(C

1

) and g

lies in ext(C

1

), and set r

1

= f and r

2

= g.

((=) : Assume M

1

and M

2

are two twin omponents with respetive twin

roots r

1

and r

2

. Sine both omponents are trees, then by Lemma 13, eah

one must lie either in the interior of a min-yle or in the exterior of the unique

max-yle. Suppose k > 1, then there are two ases:

� M

1

2 int(C

i

) and M

2

2 int(C

j

) where C

i

and C

j

are disjoint min-yles in

C. Beause G is planar and C

i

and C

j

are disjoint, any path from r

1

to r

2

in G

0

must ontain an intermediate vertex lying in ext(C

i

)\ ext(C

j

). So, r

1

and r

2

are not twin roots, a ontradition.

� M

1

2 int(C

i

) and M

2

2 ext(C

j

) where C

i

is a min-yle and C

j

is the

unique max-yle in C. Sine k > 1, we have C

i

6= C

j

. Beause G is planar

and C

i

and C

j

are disjoint, any path from r

1

to r

2

in G

0

ontains a third

vertex lying in ext(C

i

) \ int(C

j

). So, r

1

and r

2

are not twin roots. �

3 The redution PLAN-HAM � PLAN-SAT

To get a parsimonious redution, we need to �x the twin roots r

1

and r

2

inside

two predetermined faes of G. From the proof of Lemma 16, r

1

and r

2

may be

arbitrarily hosen among any two neighbor faes separated by a thik edge.

In order to �x suh a thik edge, we hoose an arbitrary vertex v 2 V of

any degree, and we explode it into the subgraph gadget G(v) of Figure 3b.

A one-to-one orrespondene suggested by Figures 3(,d) holds between the

Hamiltonian yles in G before and after the substitution, and G now ontains

a vertex t of degree 2 whih fores its two inident edges to be thik in any

Hamiltonian yle. Thus, r

1

and r

2

an be �xed as the two adjaent faes of t.
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the fixed faces for the roots(b) (c) (d)(a)

v v

t t

(a)  a vertex v of degree d= 6

(b)  the subgraph gadget G(v)

(c)  a path through the vertex v

(d)  corresponding path in G(v)

r1

r2

r1

r2

vertices of degree 2

Fig. 3. Explosion of a vertex of degree d = 6

For the sake of readability, we assume that the speial lauses 1=N(`

1

; � � � ; `

d

)

and 2=N(`

1

; � � � ; `

d

) are SAT subsystems that are satis�ed i� exatly one (resp.

two) literal among `

i

(1 � i � d), are assigned true. Implementing them

linearly and parsimoniously with planar lauses is an easy task detailed in

Appendix A. The redution is as follows:

� Set of variables: Eah edge e 2 E [ E

0

has an assoiated boolean variable

thik

e

, whih is true i� e is thik in C[D. The hoie of r

1

and r

2

determines

a diretion for the forestD, so eah vertex f 2 V

0

of degree d has d assoiated

boolean variables father

e

0

f

, one for eah edge e

0

= (f; g) 2 E

0

, whih is true

i� e

0

2 D and g is the father of f in D.

� C is a k-Ham partition of G: For eah vertex v 2 V of degree d, with inident

edges e

1

; � � � ; e

d

, generate the onstraint 2=N(thik

e

1

; � � � ; thik

e

d

).

� D is the Ham-dual of C: For eah edge e 2 E and e

0

= dual(e), generate the

lauses (thik

e

_ thik

e

0

) and (:thik

e

_ :thik

e

0

).

� Eah fae other than r

1

and r

2

has exatly one father: For eah vertex

f 2 V

0

of degree d, f =2 fr

1

; r

2

g, with inident edges e

0

1

; � � � ; e

0

d

, generate the

onstraint 1=N(father

e

0

1

f

; � � � ; father

e

0

d

f

).

� Both twin roots r

1

and r

2

have no father: For eah edge e

0

2 E

0

inident to

a root r 2 fr

1

; r

2

g, generate unit lause (:father

e

0

r

).

� The direted Ham-dual D is onsistent: For eah edge e

0

= (f; g) 2 E

0

,

generate the onstraints (father

e

0

f

=) thik

e

0

), (father

e

0

g

=) thik

e

0

),

(thik

e

0

=) father

e

0

f

_ father

e

0

g

), and (:father

e

0

g

_ :father

e

0

f

).

The system is linear in jG+G

0

j and its orretness is an immediate onsequene

of Lemmas 14 and 16. Moreover, Figure 4 shows how to embed the SAT

system in eah fae so that it an be made planar, by using a linear number

of parsimonious PLAN-SAT rossover-boxes (this standard mehanism [7,10℄

embeds one variable in eah orner of a square, and fores the opposite orner

variables to have the same assignment). Thus, Theorem 1 is proved.

(1) (2)

(1) local view of dual (G) embedded in G
(2) local planar SAT system

parsimonious crossover-box

constraint gadgets k/N (...), for k= 1 or 2

(not a twin root)e=
 p

ri
m

al
 (

e’
)

father
e’
g

father f
e’

fa
ce

 g e’= dual (e)

face f

thick

thick

e

e’

clause vertex is implicit 

variable vertex

2/N

1/N

2/N

2/N 2/N

k/N

(represented by the hyperedge link)

Fig. 4. Loal planar embedding of the SAT system in a fae
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4 Conlusion

Linear redutions allow to investigate the strong relationships between the

omplexity of hard (NP-omplete) problems, and hene to lassify them more

preisely than polynomial or even quasi-linear redutions. Further, exat re-

dutions allow to show that two ombinatorial problems have the same om-

plexity w.r.t the struture of their set of solutions. Surprisingly, we have shown

the exat equivalene of PLAN-HAM and PLAN-SAT. We now hope to enlarge

this exat lass to many other ombinatorial planar problems [2℄.
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APPENDIX

A Planar enoding of the onstraints 1/N and 2/N

We enode the onstraint 1=N(x

1

; � � � ; x

d

) by simulating the pair of �nite

boolean sequenes ([a

k

℄; [x

k

℄) where [a

k

℄ is a monotone non-inreasing boolean

sequene starting with one, and where x

k

= 1 i� k is the last rank suh that

a

k

= 1, e.g. [a

k

℄ = [1; 1; 1; 0; 0; 0℄ and [x

k

℄ = [0; 0; 1; 0; 0; 0℄. The monotoniity

of [a

k

℄ is enoded by the unit lause (a

1

) and the lauses (a

k+1

=) a

k

),

for any k < d. The sequene [x

k

℄ is then enoded by (x

d

() a

d

) and

(x

k

() a

k

^:a

k+1

) for any k < d, whih develop into the lauses (:x

d

_ a

d

),

(:a

d

_ x

d

), (:x

k

_ a

k

), (:x

k

_:a

k+1

), (:a

k

_ a

k+1

_ x

k

). A planar embedding

of 1=N(� � �) is the hain of tetrahedrons shown in Figure A.1a.

a1 a2 a3 a4 a5 ad

x1 x2 x3 x4 x5 xd

b1 b2 b3 b4 b5 bd

y2 y3 y4 y5

x5x4x3x2x1

y1

z1 z2 z4 z5
xd

ada2a1 a2 a3 a5a4 ada3 a4 a5
x1 x2 x3 x4 x5

zd

yd

z3

x2 x3 x4 x5x1

planar embedding for 1/N  (x1 , ... , xd)

variables assigned true  (example)

variables assigned false  (example)

planar embedding for 2/N  (x1 , ... , xd)

parsimonious crossover-box

(a) (b)

(a)

(b)

Fig. A.1. Planar embedding of onstraints 1=N and 2=N(x

1

; � � � ; x

d

), for d = 6

The enoding of the onstraint 2=N(x

1

; � � � ; x

d

) follows the same idea. We

simulate two pairs of �nite boolean sequenes ([a

k

℄; [y

k

℄) and ([b

k

℄; [z

k

℄) the

same way as above, so that the sequenes [y

k

℄ and [z

k

℄ ontain exatly one

\one". Then, we de�ne [x

k

℄ by (x

k

() y

k

_ z

k

) for any k � d, whih develops

into (:x

k

_ y

k

_ z

k

), (:y

k

_ x

k

), (:z

k

_ x

k

). Moreover, we want y

i

= 1 and

z

j

= 1 for i 6= j, so we onstrain the initial subsequene of ones in [a

k

℄ to

be stritly longer than the initial subsequene of ones in [b

k

℄ by adding the

lauses (a

k

_:b

k

) and (:y

k

_:z

k

) for any k � d. A possible planar embedding

of 2=N(� � �) is the triple hain of tetrahedrons shown in Figure A.1b, where

d parsimonious rossover-boxes have been added in order to embed a opy of

[x

k

℄ on the boundary of the outer fae.
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