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Abstra
t

It is 
onje
tured that there exists no linear redu
tion from the Hamiltonian Cy
le

problem to the Satis�ability problem. In 
ontrast to the general 
ase, we show that

the planar Hamiltonian 
y
le problem is linearly and parsimoniously redu
ible to

the planar Satis�ability problem. Sin
e the 
onverse is already known to be true,

the two problems are equivalent under linear parsimonious redu
tions.
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1 Introdu
tion

Many NP-
omplete problems, (e.g., SAT, 3-COL, KERNEL, 3DM) are not

only equivalent under polynomial redu
tions, but also under linear redu
-

tions, i.e. redu
tions 
omputable in linear time on Random A

ess Ma
hine

[3{6℄.
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Moreover, the transformations 
an often be made parsimonious, i.e.

su
h that they realize a one-to-one 
orresponden
e between the solutions of

the instan
es. In this note, as in [1,2℄, we investigate exa
t (i.e. linear and

parsimonious) redu
tions. The interest of su
h a notion is that if two prob-

lems A and B are exa
tly equivalent, i.e. exa
tly redu
ible ea
h other, then

A and B have exa
tly the same 
omplexity a

ording to: (a) the number of

Email address: regis.barban
hon�info.uni
aen.fr (R�egis Barban
hon).
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In parti
ular, [6℄ argues the robustness of linear time 
omplexity on RAMS. Other

authors [11,8℄ have studied non-deterministi
 quasi-linear time (NQL), involving

redu
tions 
omputable in time O(n log

O(1)

n) on Turing Ma
hines.
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their solutions, and (b) the enumeration of their solutions (delays between two


onse
utive solutions are the same up to a multipli
ative 
onstant).

Given a 
onne
ted graphG, the HAM problem asks whether a (so 
alled Hamil-

tonian) 
y
le 
an visit ea
h vertex of G exa
tly on
e. There are many variants

of this problem: the graph G may be dire
ted or undire
ted, we may want a

path instead of a 
y
le, and its ends may be spe
i�ed or not. If G is planar,

this indu
es as many variants for the PLAN-HAM problem. In [1℄, we showed

that all the 
ited HAM (resp. PLAN-HAM) variants are exa
tly equivalent.

Given a formula F of the propositional logi
 in 
onjun
tive normal form, the

SAT problem asks whether F has a satisfying assignment. A SAT instan
e


an be seen as a bipartite graph problem, in whi
h there is one vertex v

x

per

variable x, one vertex v




per 
lause 
, and one edge (v

x

; v




) per o

urren
e of

x or :x in 
. If this graph is planar, then we have a PLAN-SAT instan
e.

Theorem 1 PLAN-SAT and PLAN-HAM are exa
tly equivalent, i.e.:

(a) PLAN-SAT is exa
tly redu
ible to PLAN-HAM.

(b) PLAN-HAM is exa
tly redu
ible to PLAN-SAT.

We showed (a) in [1℄, and we show (b) in this note. The result is surprising

be
ause SAT is believed to be too weak [9℄ to linearly express the hamiltoni
ity

property in the general 
ase (whi
h 
ontrasts with its NQL-
ompleteness [11℄).

dual edges not in D
dual edges in DG’
dual vertices (root faces in black)

(a) a partition C into 2 cycles and its dual D
a Hamiltonian cycle C and its dual D(b)

primal vertices
primal edges in C
primal edges not in C

G

(b)(a)

Fig. 1. A planar graph G and its dual graph G
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Here is an intuition (see Figure 1): Firstly, given a 
onne
ted planar graph G,

our SAT system builds a partition C of G into k disjoint 
y
les by 
onstraining

ea
h vertex to have exa
tly two in
ident edges in C. The se
ond idea is to for
e

k = 1 (i.e. that C is a Hamiltonian 
y
le) with the help of the dual graph G

0

.

C indu
es a stru
tureD inG

0

, whi
h is the graph of fa
es that are left 
onne
ted

by C. Lemma 14 shows that C is a Hamiltonian 
y
le i� D is a forest of exa
tly

two trees. So, our SAT system further 
onstrains ea
h fa
e but two to ele
t

exa
tly one father among its adja
ent fa
es in the same 
onne
ted 
omponent

of D. Both fa
es without father are the roots of the only two trees of D, but

D may still 
ontain additional 
onne
ted 
omponents that are 
y
les possibly

adorned with entering trees. These 
y
les do not ele
t roots, and hen
e they


annot be dete
ted by the SAT system. Fortunately, Lemma 16 shows that

any 
y
le in D prevents the two roots to be adja
ent. So, by 
onstraining the

roots to be adja
ent, we indire
tly forbid 
y
les in D, and we get a linear

redu
tion PLAN-HAM � SAT, whi
h is even parsimonious, thanks to a tri
k

to �x the roots a priori. The SAT system is then easily made planar.
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2 A lo
al 
hara
terization of planar Hamiltoni
ity

Fa
t 2 (generalized Jordan 
urve theorem) Let C be a 
olle
tion of k

disjoint simple 
losed 
urves C

1

; � � � ; C

k

lying in a sphere S. Then S n C falls

into exa
tly k + 1 maximal 
onne
ted regions (or regions, for short).

We are now given a 
onne
ted planar graphG(V;E; F ) embedded in a sphere S,

with V (resp. E, F ) as its set of verti
es (resp. edges, fa
es).

De�nition 3 (k-Ham partition, Ham-
y
le) A k-Ham partition C of G

is a 
olle
tion of k disjoint simple 
y
les C

1

(V

1

; E

1

); � � � ; C

k

(V

k

; E

k

) in G, su
h

that (V

1

; � � � ; V

k

) is a partition of V . If k = 1, then C is a Ham-
y
le of G. For

some �xed k-Ham partition C, an edge e 2 E is said to be thi
k (resp. thin)

in G if

e

2 [E

i

(resp.

e

=2 [E

i

), 1 � i � k.

De�nition 4 (dual graph) For ea
h edge e 2 E with adja
ent fa
es f

1

and

f

2

, we de�ne e

0

= dual(e) to be a new asso
iated edge (f

1

; f

2

), where f

1

and f

2

are seen as verti
es. We also note e = primal(e

0

). The dual graph

G

0

(V

0

; E

0

; F

0

) of G, denoted dual(G), is de�ned as follows: V

0

= F , F

0

= V ,

and E

0

= fdual(e); e 2 Eg. Ea
h vertex v

0

2 V

0

is embedded in the sphere S

su
h that v

0

lies in the region R indu
ed by its asso
iated fa
e f 2 F , and ea
h

edge e

0

= dual(e) 2 E

0

is embedded in S su
h that e

0


rosses e exa
tly on
e

and does not 
ross G elsewhere.

De�nition 5 (Ham-dual) Let G

0

= dual(G) and C be a k-Ham partition

of G. The Ham-dual D of C is de�ned to be G

0

after removal of all edges

e

0

= dual(e) su
h that e is thi
k in G, i.e. belongs to C. The edges in D

(resp. in G

0

n D) are 
alled the thi
k (resp. thin) edges of G

0

, in other words,

e

0

= dual(e) is thi
k (thin) i� e is thin (thi
k). Maximal 
onne
ted 
omponents

in D are 
alled 
omponents, for short.

From now on, we are given a k-Ham partition C in G, along with its Ham-

dual D in G

0

= dual(G).

Claim 6 D has exa
tly k

0

= k + 1 
omponents.

PROOF. It immediately follows from Fa
t 2. �

De�nition 7 (C-regions) Let C be a simple 
y
le in G or G

0

. From Fa
t 2,

S nC falls into two regions R

1

and R

2

, 
alled the two C-regions, su
h that R

1

,

R

2

, and C form a partition of the sphere S.

De�nition 8 (C-
hords, C-edges, R-edges) Let C be a simple 
y
le in G

or G

0

, R be an arbitrary C-region, and e = (x; y) 2 E be an edge lying in
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C [R su
h that x 2 C. If y 2 R, then e is 
alled an R-edge. Otherwise, y 2 C

and e is 
alled a C-edge (resp. a C-
hord) if e 2 C (resp. if e =2 C). Note that,

if C belongs to C, then all its C-edges are thi
k, and sin
e the 
y
les in C are

disjoint, all its R-edges and C-
hords are thin.

(b) a Ci-region R (outside Ci) with an R-edge e0

(a) a Ci-region R (inside Ci) without R-edge

the rotation next (e, x)(a)

e0

(b) (c)

the rotation clock (e, x)

(c) the cycle in D described in (b) by next (e, x) x

y

a component M in D

a cycle Ci of a k-Ham partition

Fig. 2. A
y
li
 and 
y
li
 
omponents in D

Claim 9 Let C

i

be a 
y
le in C, and R be an arbitrary C

i

-region, su
h that

there does not exist any R-edge. Then the unique 
omponent M 2 D lying in

R is a
y
li
, i.e. is a tree (see Figure 2a).

PROOF. Sin
e no R-edge lies in R and G is planar and 
onne
ted, the set

V

R

� V of verti
es lying in R is empty. Thus, R may only 
ontains C

i

-
hords.

Now, suppose that M is 
y
li
: let C

0

be a 
y
le in M , e

0

be an arbitrary edge

of C

0

and e = (x; y) = primal(e

0

). Noti
e that x and y lie in the two distin
t

C

0

-regions. Sin
e exa
tly one of the two C

0

-regions does not 
ontain C

i

, either

x or y must lie in R, whi
h 
ontradi
ts V

R

= ;. �

Claim 10 Let C

i

be a 
y
le in C, and R be an arbitrary C

i

-region, su
h that

there exists an R-edge e

0

2 E. Then, the 
omponent M of D 
ontaining e

0

0

=

dual(e

0

) is 
y
li
 (see Figures 2(b,
)).

PROOF. For any edge e = (x; y), 
lo
k(e; x) denotes the edge after e in

the 
lo
kwise order around x. Also, other(e; x) denotes y, and vi
e-versa.

Let I(e

0

) be the iteration e:=e

0

(x,y); loop f e:=
lo
k(e,x); write(e);

x:=other(e,x); g. If we stop I(e

0

) as soon as e

0

is met again, then I(e

0

)

writes the boundary of a fa
e f in the anti-
lo
kwise order. This fa
e f , de-

noted left(e

0

; x), is the left-hand fa
e for an observer lo
ated at y and looking

towards x. Now, suppose that e

0

is an R-edge of C

i

with x 2 C. Then, the

�rst R-edge e met after e

0

in I(e

0

) is denoted by e = next(e

0

; x). Therefore,

e

0

and next(e

0

; x) share the same adja
ent fa
e f = left(e

0

; x).

If C

i

is a 
y
le of C, and e is an R-edge of C

i

, then 
ommon(e; C

i

) denotes the

unique 
ommon vertex of e and C. Let J(e

0

; C

i

) be the iteration e:=e

0

(x,y);

loop f write(left(e,x),dual(e)); e:=next(e,x); x:=
ommon(e,C

i

); g

until(e=e

0

). The loop terminates be
ause of the invariant x 2 C

i

. Sin
e ea
h

en
ountered edge e shares a 
ommon fa
e left(e; x) with next(e; x), J(e

0

; C

i

)

writes the su

essive verti
es and edges of a 
y
le C

0

in G

0

(possibly non-simple
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if some arti
ulation point x is met). Sin
e all edges of C

0

are the dual edges

of R-edges, and sin
e R-edges are always thin in G, it follows that the edges

of C

0

are all thi
k in G

0

. This means that the 
omponent M lying in R and


ontaining e

0

0

= dual(e

0

) also 
ontains the 
y
le C

0

. �

From now on, an arbitrary outer-fa
e f

out

2 F is 
hosen in G.

De�nition 11 (interior, exterior) Let C be a simple 
y
le in G, and R

1

,

R

2

be the two C-regions. Exa
tly one of them, say R

2

, 
ontains f

out

. Then

R

1

(resp. R

2

) is said to be the interior (resp. exterior) of C, and is denoted

int(C) (resp. ext(C)).

De�nition 12 (nested 
y
les) For any two 
y
les C

i

; C

j

2 C su
h that

int(C

i

)�int(C

j

), we note C

i

< C

j

(whi
h is read: C

i

is nested in C

j

, or

C

j

nests C

i

). Moreover, if there is no C

h

2 C su
h that C

i

< C

h

< C

j

, then

we note C

j

= su

(C

i

) and brothers(C

i

) = fC

j

2 C; su

(C

j

) = su

(C

i

)g.

Finally, a min-
y
le (resp. max-
y
le) C

i

is a 
y
le of C whi
h nests (resp. is

nested in) no other 
y
le of C.

Lemma 13 Let M be a 
omponent in D. Then M is a tree i�: (1) M lies in

the interior of a min-
y
le C

i

of C, or (2) M lies in the exterior of a 
y
le C

j

whi
h is the unique max-
y
le of C.

PROOF. There are exa
tly four 
ases:

� If M lies in R = int(C

i

) and C

i

is a min-
y
le of C, then Claim 9 applies to

C

i

and R, and M is a tree.

� If M lies in R = ext(C

j

) and C

j

is the unique max-
y
le of C, then Claim 9

applies to C

j

and R, and M is a tree.

� If M lies in R = ext(C

i

) and C

i

is a non-unique max-
y
le of C, then sin
e

G is planar and 
onne
ted, there exists e = (x; y) 2 E su
h that x 2 C

i

and

y 2 C

j

for some max-
y
le C

j

6= C

i

. Sin
e e is an R-edge, Claim 10 applies

to C

i

and R, and M is 
y
li
.

� Otherwise, M lies in ext(C

i

) \ int(C

j

), for some C

j

= su

(C

i

). Sin
e G

is planar and 
onne
ted, there exists e = (x; y) 2 E su
h that x 2 C

i

and

y 2 C

j

or y 2 C

h

where C

h

2 brothers(C

i

), h 6= i. In both 
ases, e is

an R-edge for R = ext(C

i

), so Claim 10 applies to C

i

and R, and M is


y
li
. �

Lemma 14 k = 1, i.e. C is a Ham-Cy
le i� D 
onsists of exa
tly two trees.

PROOF. (=)) : If k = 1, then let C

1

be the unique 
y
le in C: by Claim 6,

D has k

0

= k + 1 = 2 
omponents M

1

and M

2

, lying in int(C

1

) and ext(C

1

)

5



respe
tively. Sin
e C

1

is both a min-
y
le and the unique max-
y
le in C,

Lemma 13 applies twi
e, and M

1

and M

2

are both trees.

((=) : If k

0

= 2, then by Claim 6, k = k

0

� 1 = 1. �

De�nition 15 (twin 
omponents) Two 
omponents M

1

and M

2

in D are

said to be twin i� the two following 
onditions hold: (1) both M

1

and M

2

are

trees, and (2) there are two verti
es r

1

2 M

1

and r

2

2 M

2

, 
alled the twin

roots of M

1

and M

2

, su
h that r

1

and r

2

are neighbor, i.e. (r

1

; r

2

) 2 E

0

.

Lemma 16 k = 1, i.e. C is a Ham-
y
le i� two twin 
omponents exist in D.

PROOF. (=)) : It is an immediate 
onsequen
e of Lemma 14. We only have

to exhibit two twin roots r

1

and r

2

: Choose an arbitrary edge e in the unique


y
le C

1

2 C, and let e

0

= (f; g) = dual(e), su
h that f lies in int(C

1

) and g

lies in ext(C

1

), and set r

1

= f and r

2

= g.

((=) : Assume M

1

and M

2

are two twin 
omponents with respe
tive twin

roots r

1

and r

2

. Sin
e both 
omponents are trees, then by Lemma 13, ea
h

one must lie either in the interior of a min-
y
le or in the exterior of the unique

max-
y
le. Suppose k > 1, then there are two 
ases:

� M

1

2 int(C

i

) and M

2

2 int(C

j

) where C

i

and C

j

are disjoint min-
y
les in

C. Be
ause G is planar and C

i

and C

j

are disjoint, any path from r

1

to r

2

in G

0

must 
ontain an intermediate vertex lying in ext(C

i

)\ ext(C

j

). So, r

1

and r

2

are not twin roots, a 
ontradi
tion.

� M

1

2 int(C

i

) and M

2

2 ext(C

j

) where C

i

is a min-
y
le and C

j

is the

unique max-
y
le in C. Sin
e k > 1, we have C

i

6= C

j

. Be
ause G is planar

and C

i

and C

j

are disjoint, any path from r

1

to r

2

in G

0


ontains a third

vertex lying in ext(C

i

) \ int(C

j

). So, r

1

and r

2

are not twin roots. �

3 The redu
tion PLAN-HAM � PLAN-SAT

To get a parsimonious redu
tion, we need to �x the twin roots r

1

and r

2

inside

two predetermined fa
es of G. From the proof of Lemma 16, r

1

and r

2

may be

arbitrarily 
hosen among any two neighbor fa
es separated by a thi
k edge.

In order to �x su
h a thi
k edge, we 
hoose an arbitrary vertex v 2 V of

any degree, and we explode it into the subgraph gadget G(v) of Figure 3b.

A one-to-one 
orresponden
e suggested by Figures 3(
,d) holds between the

Hamiltonian 
y
les in G before and after the substitution, and G now 
ontains

a vertex t of degree 2 whi
h for
es its two in
ident edges to be thi
k in any

Hamiltonian 
y
le. Thus, r

1

and r

2


an be �xed as the two adja
ent fa
es of t.
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the fixed faces for the roots(b) (c) (d)(a)

v v

t t

(a)  a vertex v of degree d= 6

(b)  the subgraph gadget G(v)

(c)  a path through the vertex v

(d)  corresponding path in G(v)

r1

r2

r1

r2

vertices of degree 2

Fig. 3. Explosion of a vertex of degree d = 6

For the sake of readability, we assume that the spe
ial 
lauses 1=N(`

1

; � � � ; `

d

)

and 2=N(`

1

; � � � ; `

d

) are SAT subsystems that are satis�ed i� exa
tly one (resp.

two) literal among `

i

(1 � i � d), are assigned true. Implementing them

linearly and parsimoniously with planar 
lauses is an easy task detailed in

Appendix A. The redu
tion is as follows:

� Set of variables: Ea
h edge e 2 E [ E

0

has an asso
iated boolean variable

thi
k

e

, whi
h is true i� e is thi
k in C[D. The 
hoi
e of r

1

and r

2

determines

a dire
tion for the forestD, so ea
h vertex f 2 V

0

of degree d has d asso
iated

boolean variables father

e

0

f

, one for ea
h edge e

0

= (f; g) 2 E

0

, whi
h is true

i� e

0

2 D and g is the father of f in D.

� C is a k-Ham partition of G: For ea
h vertex v 2 V of degree d, with in
ident

edges e

1

; � � � ; e

d

, generate the 
onstraint 2=N(thi
k

e

1

; � � � ; thi
k

e

d

).

� D is the Ham-dual of C: For ea
h edge e 2 E and e

0

= dual(e), generate the


lauses (thi
k

e

_ thi
k

e

0

) and (:thi
k

e

_ :thi
k

e

0

).

� Ea
h fa
e other than r

1

and r

2

has exa
tly one father: For ea
h vertex

f 2 V

0

of degree d, f =2 fr

1

; r

2

g, with in
ident edges e

0

1

; � � � ; e

0

d

, generate the


onstraint 1=N(father

e

0

1

f

; � � � ; father

e

0

d

f

).

� Both twin roots r

1

and r

2

have no father: For ea
h edge e

0

2 E

0

in
ident to

a root r 2 fr

1

; r

2

g, generate unit 
lause (:father

e

0

r

).

� The dire
ted Ham-dual D is 
onsistent: For ea
h edge e

0

= (f; g) 2 E

0

,

generate the 
onstraints (father

e

0

f

=) thi
k

e

0

), (father

e

0

g

=) thi
k

e

0

),

(thi
k

e

0

=) father

e

0

f

_ father

e

0

g

), and (:father

e

0

g

_ :father

e

0

f

).

The system is linear in jG+G

0

j and its 
orre
tness is an immediate 
onsequen
e

of Lemmas 14 and 16. Moreover, Figure 4 shows how to embed the SAT

system in ea
h fa
e so that it 
an be made planar, by using a linear number

of parsimonious PLAN-SAT 
rossover-boxes (this standard me
hanism [7,10℄

embeds one variable in ea
h 
orner of a square, and for
es the opposite 
orner

variables to have the same assignment). Thus, Theorem 1 is proved.

(1) (2)

(1) local view of dual (G) embedded in G
(2) local planar SAT system

parsimonious crossover-box

constraint gadgets k/N (...), for k= 1 or 2

(not a twin root)e=
 p

ri
m

al
 (

e’
)

father
e’
g

father f
e’

fa
ce

 g e’= dual (e)

face f

thick

thick

e

e’

clause vertex is implicit 

variable vertex

2/N

1/N

2/N

2/N 2/N

k/N

(represented by the hyperedge link)

Fig. 4. Lo
al planar embedding of the SAT system in a fa
e
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4 Con
lusion

Linear redu
tions allow to investigate the strong relationships between the


omplexity of hard (NP-
omplete) problems, and hen
e to 
lassify them more

pre
isely than polynomial or even quasi-linear redu
tions. Further, exa
t re-

du
tions allow to show that two 
ombinatorial problems have the same 
om-

plexity w.r.t the stru
ture of their set of solutions. Surprisingly, we have shown

the exa
t equivalen
e of PLAN-HAM and PLAN-SAT. We now hope to enlarge

this exa
t 
lass to many other 
ombinatorial planar problems [2℄.
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APPENDIX

A Planar en
oding of the 
onstraints 1/N and 2/N

We en
ode the 
onstraint 1=N(x

1

; � � � ; x

d

) by simulating the pair of �nite

boolean sequen
es ([a

k

℄; [x

k

℄) where [a

k

℄ is a monotone non-in
reasing boolean

sequen
e starting with one, and where x

k

= 1 i� k is the last rank su
h that

a

k

= 1, e.g. [a

k

℄ = [1; 1; 1; 0; 0; 0℄ and [x

k

℄ = [0; 0; 1; 0; 0; 0℄. The monotoni
ity

of [a

k

℄ is en
oded by the unit 
lause (a

1

) and the 
lauses (a

k+1

=) a

k

),

for any k < d. The sequen
e [x

k

℄ is then en
oded by (x

d

() a

d

) and

(x

k

() a

k

^:a

k+1

) for any k < d, whi
h develop into the 
lauses (:x

d

_ a

d

),

(:a

d

_ x

d

), (:x

k

_ a

k

), (:x

k

_:a

k+1

), (:a

k

_ a

k+1

_ x

k

). A planar embedding

of 1=N(� � �) is the 
hain of tetrahedrons shown in Figure A.1a.

a1 a2 a3 a4 a5 ad

x1 x2 x3 x4 x5 xd

b1 b2 b3 b4 b5 bd

y2 y3 y4 y5

x5x4x3x2x1

y1

z1 z2 z4 z5
xd

ada2a1 a2 a3 a5a4 ada3 a4 a5
x1 x2 x3 x4 x5

zd

yd

z3

x2 x3 x4 x5x1

planar embedding for 1/N  (x1 , ... , xd)

variables assigned true  (example)

variables assigned false  (example)

planar embedding for 2/N  (x1 , ... , xd)

parsimonious crossover-box

(a) (b)

(a)

(b)

Fig. A.1. Planar embedding of 
onstraints 1=N and 2=N(x

1

; � � � ; x

d

), for d = 6

The en
oding of the 
onstraint 2=N(x

1

; � � � ; x

d

) follows the same idea. We

simulate two pairs of �nite boolean sequen
es ([a

k

℄; [y

k

℄) and ([b

k

℄; [z

k

℄) the

same way as above, so that the sequen
es [y

k

℄ and [z

k

℄ 
ontain exa
tly one

\one". Then, we de�ne [x

k

℄ by (x

k

() y

k

_ z

k

) for any k � d, whi
h develops

into (:x

k

_ y

k

_ z

k

), (:y

k

_ x

k

), (:z

k

_ x

k

). Moreover, we want y

i

= 1 and

z

j

= 1 for i 6= j, so we 
onstrain the initial subsequen
e of ones in [a

k

℄ to

be stri
tly longer than the initial subsequen
e of ones in [b

k

℄ by adding the


lauses (a

k

_:b

k

) and (:y

k

_:z

k

) for any k � d. A possible planar embedding

of 2=N(� � �) is the triple 
hain of tetrahedrons shown in Figure A.1b, where

d parsimonious 
rossover-boxes have been added in order to embed a 
opy of

[x

k

℄ on the boundary of the outer fa
e.
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