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Abstract

We prove that the Satisfiability (resp. Planar Satisfiability) problem is parsimo-
niously P-time reducible to the 3-Colorability (resp. Planar 3-Colorability) prob-
lem, that means that the exact number of solutions is preserved by the reduction,
provided that 3-colorings are counted modulo their six trivial color permutations.
In particular, the uniqueness of solutions is preserved, which implies that Unique
3-Colorability is exactly as hard as Unique Satisfiability in the general case as well
as in the planar case. A consequence of our result is the DP-completeness of Unique
3-Colorability and Unique Planar 3-Colorability under random P-time reductions.
It also gives a finer and unified proof of the #P-completeness of #3-Colorability
that was first obtained by Linial for the general case, and later by Hunt et al. for
the planar case. Previous authors’ reductions were either weakly parsimonious with
a multiplication of the numbers of solutions by an exponential factor, or involved
#P-complete intermediate counting problems derived from trivial “yes”-decision
problems.

1 Introduction

Parsimonious reductions — i.e., P-time reductions that preserve the exact num-
ber of solutions of the input problem — are interesting for at least two reasons:
(1) Such reductions generally preserve the structure of the solutions, since they
realize in practice a bijective correspondence between the sets of solutions that
is P-time computable [4], and (2) Such reductions not only allow to prove #P-
completeness results for counting problems [15] but also DP-completeness re-
sults for decision problems asking about the existence of unique solutions [16].
Many P-time reductions between NP-complete problems are indeed parsimo-
nious. In particular, it is significant to note that the generic reduction that
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proves the NP-hardness of the Satisfiability problem (SAT) is easily made par-
simonious, which means that SAT accurately captures the structure of any NP
problem.

This is not true for all NP-complete problems however, to begin with the ones
whose sets of solutions display intrinsic symmetries, e.g. graph 3-Colorability'
(3-COL). Typically, each solution of any instance of 3-COL induces six solu-
tions that are isomorphic under color permutations. Therefore, the number
of 3-colorings of any instance of 3-COL is trivially a multiple of six. Another
example is the problem called Not-All-Equal-In-3-Positive-Sat (NAE-3-SAT),
which asks whether a given conjunction of positive 3-clauses has an assignment
for which each 3-clause contains at least one true literal and one false literal.
Each solution of NAE-3-SAT induces two solutions that are isomorphic under
bitwise negation, so the number of solutions of every instance of NAE-3-SAT
is trivially even. Of course, no such symmetry happens for SAT, and for any
fixed integer k, it is easy to build SAT instances with exactly k solutions. As
an obvious consequence, no parsimonious transformation can exist from SAT

to 3-COL (or to NAE-3-SAT).

However, one can naturally regard a group of isomorphic solutions as only
one solution, and count the solutions accordingly. With this new counting
convention, the argument does not hold anymore and one can naturally asks
whether parsimonious P-time transformations exist from SAT to 3-COL (resp.
to NAE-3-SAT). Also, it now makes sense to ask if a given 3-COL or a NAE-3-
SAT instance has a unique solution (problems U-3-COL and U-NAE-3-SAT),
and exhibiting the reductions above would imply that U-3-COL (resp. NAE-
3-SAT) is as hard as deciding if a SAT instance has a unique satisfying as-
signment (problem U-SAT).

From now on, we shall always consider any group of isomorphic solutions as
only one solution: Interestingly, it is already known that a parsimonious reduc-
tion from NAE-3-SAT to SAT does exist under our counting convention, since
Creignou and Hermann [5] parsimoniously reduced I1-Ezactly-In-Positive-3-
Sat (1/3-SAT) to NAE-3-SAT. The link to SAT itself is done via the following
result, whose proof can be found in [9] or alternatively in Appendix B of this

paper:
Proposition 1 1/3-SAT and SAT are parsimoniously reducible each other.

However, we are not aware of a similar result for the more interesting prob-
lem 3-COL. Indeed, the classical reductions from SAT to 3-COL, e.g., the
one presented by Kozen [11], are not even weakly parsimonious, i.e., they
do not even establish any precise relation between the number of solutions
of the instances, because the 3-colorings are duplicated without any control.

! Terms in italics are formally defined in Section 2.



However, a weakly parsimonious reduction from SAT to 3-COL can be ob-
tained by composing three transformations: the parsimonious reduction from
SAT to 1/3-SAT, Creignou and Hermann’s parsimonious reduction from 1/3-
SAT to NAE-3-SAT [5], and Dewdney’s weakly parsimonious reduction from
NAE-3-SAT to 3-COL [6]. While this weak parsimony together with the #P-
completeness of #SAT is sufficient to imply the #P-completeness of #3-COL 2
it gives no clue about the expressiveness of U-3-COL compared to the one of
U-SAT, because Dewdney’s reduction multiplies the solutions by an exponen-
tial factor.

The same questions can naturally be addressed for the planar versions of those
problems. Note that:

Proposition 2 PLAN-1/3-SAT and PLAN-SAT are parsimoniously reducible
each other,

since the transformations between SAT and 1/3-SAT preserve the planarity
of the graphs. Also, it is well known that:

Proposition 3 Planar Satisfiability (PLAN-SAT) and SAT are parsimoniously
reducible each other.

This was established by Lichtenstein by using a well-known parsimonious
crossover-boz eliminating the potential edge crossings [12,9]. Alternatively,
one can take advantage of the parsimonious equivalence of SAT and 1/3-
SAT on one hand, and of PLAN-SAT and PLAN-1/3-SAT on the other hand,
to establish this equivalence by a parsimonious reduction from 1/3-SAT to
PLAN-1/3-SAT which is presented in Appendix C for the sake of complete-
ness.

As far as PLAN-NAE-3-SAT and PLAN-3-COL are concerned, the former is
a trivial “Yes”-problem, as an easy consequence of the Four-Colors Theorem
in planar graphs, whereas 3-COL remains NP-complete in the plane. The
classical reduction from 3-COL to PLAN-3-COL eliminates the edge crossings
by using a well-known non-parsimonious crossover-box [14,11,7]. Hunt et al.
modified this crossover-box in [10] to make it weakly parsimonious and hence
proved the #P-completeness of #PLAN-3-COL via a weakly parsimonious
reduction from 3-COL to PLAN-3-COL, with a multiplication of the number
of solutions by an exponential of the square of the size of the input.

2 #3-COL was earlier shown to be #P-complete by Linial [13], but not from the
#P-completeness of #SAT. This was done under a parsimonious P-time transfor-
mation from the #P-complete problem #STABLE in bipartite graphs to #3-COL
in bipartite graphs, that are counting problems whose associate decision problems
are both trivial “Yes”-problems.



Thus, to our knowledge and even with our natural counting convention, no
parsimonious reductions are known till now neither from 3-COL to PLAN-3-
COL nor from SAT to 3-COL, let alone from PLAN-SAT to PLAN-3-COL. In
particular, the hardness of U-3-COL and U-PLAN-3-COL are open problems.
In this paper, we show that such reductions do exist:

Proposition 4 3-COL is parsimoniously reducible to PLAN-3-COL in quadratic
time, and in particular U-3-COL is so reducible to U-PLAN-3-COL.

Proposition 5 SAT is parsimoniously reducible to 3-COL in linear time, and
in particular U-SAT is so reducible to U-3-COL.

Proposition 6 PLAN-SAT reduces parsimoniously to PLAN-3-COL in lin-
ear time, and in particular U-PLAN-SAT is so reducible to U-PLAN-3-COL.

Reductions in the literature:
—— parsimonious

e -+ weakly parsimonious
3-COL (with exponential factor of duplication)

Planar Case :
Y Parsimonious reductions in this paper:
PLAN-SAT PLAN-3-COL =P non-—trivial, presented in the body

easier, presented in the Appendices
PLAN-NAE-SAT

("yes"—problem)

General Case

Fig. 1. Reductions towards 3-COL and parsimony

Figure 1 sums up the contributions of this paper. Since the easier converse
linear reductions from (PLAN-)3-COL to (PLAN-)1/3-SAT also exist, that
implies in particular that U-3-COL and U-SAT (resp. U-PLAN-3-COL and
U-PLAN-SAT) have exactly the same time complexity up to a constant mul-
tiplicative factor. Furthermore, the delays between the output of two consecu-
tive solutions during an enumeration of all the solutions are preserved up to a
multiplicative constant. As far as polynomial time complexity classes are con-
cerned, this gives finer and unified proofs of the #P-completeness of #3-COL
and #PLAN-3-COL. Also, since U-SAT and U-PLAN-SAT are both known
to be complete problems in the class DP under random P-time reductions [9],
we conclude that:

Corollary 7 3-COL, PLAN-3-COL, SAT and PLAN-SAT are equivalent un-
der parsimonious reductions, and hence U-3-COL and U-PLAN-3-COL are
DP-complete under random P-time reductions.

The paper is organized as follows: Section 2 presents all the definitions of
technical terms used in the paper. A number of tools will have to be designed
to reach our goal. Section 3 sketches their high level behavior and explains
how we expect them to interact in the big picture. To show the parsimonious
equivalence of (PLAN-)SAT and (PLAN-)3-COL, we take advantage of the



parsimonious equivalence of SAT, PLAN-SAT, 1/3-SAT and PLAN-1/3-SAT
and we only have to parsimoniously reduce (PLAN-)3-COL to (PLAN-)1/3-
SAT. Section 4 is devoted to the details of this reduction and to the imple-
mentation of most of the tools sketched in Section 3. The complete proofs of
the behaviors of those gadgets are presented in Appendix A. The converse
reduction from (PLAN-)3-COL to (PLAN-)1/3-SAT is shown in Appendix D.
Finally, we show in Section 5 that we can derive a parsimonious crossover-box
for PLAN-1/3-COL from our tools, hence improving the weakly parsimonious
crossover-box of [10]. This gives a direct parsimonious reduction from 3-COL
to PLAN-3-COL (i.e., without using 1/3-SAT and PLAN-1/3-SAT as inter-
mediate problems).

2 Preliminaries and Definitions

We now recall the studied satisfiability/colorability problems, the involved
complexity classes, and the technical tools and concepts used in the whole

paper.

Definition 8 (Problem SAT) Input: a CNF formula ¢(V,C) with a list
of clauses C' over the set of wvariables V. Question: does V' admit a truth-
assignment such that at least one literal per clause in C is assigned true?

Definition 9 (Problem NAE-3-SAT) Input: a CNF formula ¢(V,C) of
positive 3-clauses (i.e. clauses of length 3 with no negative literals) over the
set of variables V. Question: does V' admit a truth-assignment such that each
clause in C' contains at least one true variable and one false variable, i.e.,
such that not all variables are equal in any clause?

Definition 10 (Problem 1/3-SAT) Input: a CNF formula ¢(V,C) of pos-
itive 3-clauses (i.e. clauses of length 3 with no negative literals) over the set
of variables V. Question: does V' admit a truth-assignment such that exactly
one variable per clause in C' is assigned true?

Definition 11 (Formula-Graph and Planar Formula) The formula-graph
G(¢) of a CNF formula o(V,C) where C is a list of clauses over the set of vari-
ables V', is defined as the bipartite graph G(V'UC", E), with V' = {x,,v € V'}
and C' = {z.,c € C} and E = {(z,,x.),c € C,v € c}. If G is planar, then ¢
is called a planar formula.

We now see the SAT-like problems above as vertex 2-coloring problems of the
Formula-graphs of their inputs, with the two colors true and false.



Definition 12 (Vertex k-Coloring) A vertex k-coloring of a graph G(V, E)
is a function C : V. — Py (where the k-palette Py, is a set of k colors).

Definition 13 (Problem 3-COL) Input: a graph G(V, E). Question: Does
a 3-coloring of the vertices C : V. — Py where Py = {white, gray, black}
exist so that for all (z,y) € E, C(x) # C(y)?

Definition 14 (Isomorphic Colorings) Let G(V, E) be a graph, and C1,
Cy be two vertex colorings of G with the palette P, = {1,---,k}. C; and Cy
are isomorphic if there exists a color permutation 7 : P, —> Py, such that for

al z eV, Ci(x) = m(Cy(x)).

3-COL and NAE-SAT are examples of vertex coloring problems with trivial
color isomorphisms. We now define the planar versions, counting versions and
“unique” versions of the decision problems cited above:

Definition 15 (Problem PLAN-II) For any problem I1 on graphs, its pla-
nar version PLAN-II is defined as the restriction of 11 to planar inputs.

Definition 16 (Problems #II and U-II associated to a problem II) For
any decision problem 11 on input I, the counting version #II is the problem
asking the number of distinct solutions of I for II, and its “unique” version
U-II is the problem asking whether I has a unique solution for II. For the
coloring problems cited above, a solution is a vertex coloring (in particular,

a truth assignment for SAT-like problems). For problems whose sets of solu-
tions have trivial symmetries (e.g. 3-COL and NAE-3-SAT), two isomorphic
colorings are counted as one coloring.

Definition 17 (class DP) A property belongs to the class DP if it is the
conjunction of an NP property and a co-NP property.

In particular, U-SAT and U-3-COL belong to DP since they ask on one hand
whether at least one solution exists, and on the other hand whether no two
solutions exist.

Definition 18 (Parsimonious and Weakly Parsimonious Reductions)
A P-time reduction R from problem 11, to problem Il is weakly parsimonious
if, for each instance I, € 11y, its number of solutions #1I, for problem Il
is equal to fr(Iy) X #I5, where I = R(I), #I5 is the number of solutions
of I for Ily, and fr is a P-time computable function. R is parsimonious iff

#5 = #1, (i.e., fr(l}) =1).
Our parsimonious reductions will use the following notions:

Definition 19 (Gadget and Distinguished Vertices) A gadget is a con-
nected graph G(V,E) used to build a supergraph G'(V' D V,E" O E). The



distinguished vertices xy,---,x, of G are the only vertices v € V that are
allowed to be adjacent to vertices in V' — V. If G' is planar, then G must be
planar itself, and xq,---,x, must all lie on the boundary of the outer face of
G in a specified clockwise order.

Definition 20 (Local States and Configurations) Let G be a gadget with

distinguished vertices xv, - -+, x, and 11 be a vertex k-coloring problem. A local
state of G' is a satisfying k-coloring of G, and a configuration is the restric-
tion of a local state to xy,- -+, xy,. Notice that one configuration may generally

expand into several distinct local states.

Definition 21 (Parsimonious and Weakly Parsimonious Gadget) Let
G be a gadget and 11 be a vertex k-coloring problem. G is a weakly parsimo-
nious gadget if there exists a constant s # 0 such that each satisfying config-
uration C' of G for Il expands to exactly s distinct local states. The gadget is
parsimonious iff s = 1, i.e., if there is a one-to-one correspondence between
its configurations and its local states.

3 Sketch of the reductions and their main tools

Our reductions from (PLAN)-1/3-SAT to (PLAN)-3-COL and from 3-COL to
PLAN-3-COL are rather tricky and involve sophisticated gadgets. Therefore,
we first present a simplified high-level view of the behaviors of our main gad-
gets and of the whole reductions. Fortunately the principles of the construction
are modular and rather simple.

3.1 From PLAN-1/3-SAT to PLAN-3-COL

We want to design a planarity-preserving and parsimonious P-time reduction
R from 1/3-SAT to 3-COL with the palette Py = {white, gray, black}. In the
rest of this paper, black and gray are both called dark colors. Similarly, white
and gray are both called light colors.

The main task is to design a 3-COL gadget to simulate a 1/3-SAT clause, i.e.,
a positive clause of length three that constrains exactly one of its variables to
be assigned true. Each of the three variables of the clause will be represented
by one vertex. However, we must find a correspondence between Booleans (2-
states objects) and colors (3-states objects). We choose that dark colors (i.e.,
black and gray) represent false, and white represents true. Furthermore, for the
sake of parsimony, the false should always be represented by black in the “user



interface”, i.e., in the distinguished vertices of the 1/3-SAT clause simulator,
whereas gray may appear in the “implementation side” of the gadget.

dark one— way dark one—way dark one—way
. ,,,,,, 99?‘,‘,’9?@?, - ® . ,,,,, ,C,QT?Y?r,,t?T,,, : Q O ,,,,,, 99‘1‘,’9‘,@?, - O

X ' y X ' y X ' y
Fig. 2. Mapping Boolean values to colors by substitutability of dark colors

So, we need an object such as in Fig. 2 that implements this feature of sub-
stitutability between dark colors with respect to the false value. This gadget,
called dark one-way color-converter binds two distinguished vertices x and y,
with  being on the “interface side” (i.e., z cannot be gray), and y being on the
“implementation side” (i.e., y may be gray). For any satisfying 3-coloring C,
this converter coerces C'(x) and C(y) to represent equivalent Boolean values,

, the gadget must exactly allow the configurations (C(z),C(y)) that are
either (black, black) or (black, gray) or (white, white).

A parsimonious implementation of the dark one-way color-converter will give
us the high-level scheme to implement parsimoniously the 1/3-SAT clause
simulator in the way of Fig. 3. The reader can easily check that exactly one

of the vertices x, y and z must be white and that the two other vertices must
be black.
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"X is true, y and z are false" "y is true, x and z are false" "z is true, x and y are false"

Fig. 3. Simulating a 1/3-SAT clause

The fact that colors play asymmetrical roles (there are two dark colors to
represent the false and only one white color to represent the true) requires
that the implementations of all the gadgets must use this palette convention.
It means that we will have to connect each gadget to two secondary distin-
guished vertices b and ¢ holding resp. the black and the gray representations
of the false and lying in the sector formed by two consecutive primary distin-
guished vertices. The additional requirement that planarity be preserved will
complicate the design of our gadgets since they will play an additional role
beside their primary behaviors: Fach gadget should propagate the reference
palette — i.e., the colors held in the pair (b, g) — to all the other sectors of the
gadget (into vertices also named b and g for simplicity), as shown in Fig. 3.
This way, gadgets lying in the vicinity of another gadget can use its reference
palette if needed and propagate it further themselves. as shown in Fig. 4. In
order that all the gadgets follow the same convention, we decide that in each
sector of a gadget, ¢ will follow b for the clockwise order around the gadget.
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Fig. 4. Propagating the palette reference through and between gadgets

Interestingly, the need of a connection to a palette reference allows to create
gadgets with new behaviors at no cost just by changing the content of the
palette. This is particularly true for color conversion. Normally, a dark color
converter is always connected to a pair (b, g) holding the dark palette reference
(black, gray). However, if we decide to store the light colors (white, gray) in-
stead, then we obtain a new gadget, the light one-way color-converter, allowing
a substitutability between light colors as depicted in Fig. 5 (to be compared
to Fig. 2). This behavior will be used in the next reduction.
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Fig. 5. Substitutability of light colors

3.2 From 3-COL to PLAN-3-COL

Finding a parsimonious reduction 3-COL to PLAN-3-COL essentially consists
in exhibiting a parsimonious crossover-box to resolve edge crossings as depicted
in Fig. 6: A crossing between edges (z,u) and (y,v) is resolved by replacing
the two edges by a crossover with distinguished vertices x, y, 2’ and y’ and by
creating two edges (z',u) and (y',v). The behavior of a crossover-box can be
defined as follows:

Definition 22 (Crossover-Box) A crossover-box for a vertez k-coloring prob-
lem is a planar gadget G with four distinguished vertices x, y, x', y', embedded
clockwise in this order along the boundary of the outer-face of G, so that:
(1) for any local state C, C(z) = C(2') and C(y) = C(y'), and (2) for any
two colors Cy,Cy € Py (possibly equal), there erists a local state C' so that
C(x) = C, and C(y) = C,,.

Crossover-boxes for 3-COL that exist in the literature are weakly parsimonious
at best: The standard crossover-box one finds in the complexity books [14,11,7]
is not parsimonious as shown in Fig. 7: Each configuration coloring x and y



@y T y T y
X @ e——) @ X o ———) o O

Ly ,

O v v
edge crossing crossover—box removal of the crossing

Fig. 6. Resolving edge crossings with crossover-boxes

with the same color expands into two local states whereas each configuration
coloring x and y with distinct colors expands into one local state.
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y
[
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monocolored configuration two possible local states bicolored configuration one local state
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Fig. 7. Standard non-parsimonious crossover-box for PLAN-3-COL

This crossover-box was improved by Hunt et al. to make it weakly parsimo-
nious [10]: As shown in Fig. 8, each configuration expands into two local states,
whether it colors x and y with the same colors or not. This implies that reduc-
ing a 3-COL instance with n vertices and ¢ edge crossings to a PLAN-3-COL
instance by using ¢ crossover-boxes will multiply the number of solutions by
2¢ where ¢ may be as large as ©(n?).
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monocolored configuration two possible local states bicolored configuration two possible local states

© iseither @ or O
Fig. 8. Hunt et al. 's weakly parsimonious crossover-box for PLAN-3-COL

A parsimonious crossover-box for PLAN-3-COL is hard to construct directly,
so we will not propagate the colors C(z) rightwards and C(y) downwards
directly. Instead, we will proceed in three steps as shown in Fig.10:

First, using a gadget called the prism, we decompose the colors C(x) — resp.
C(y) — into two pure colors, stored in vertices low(x) and high(xz) — resp.
low(y) and high(y). Our two pure colors are black and white. Therefore:

e Gray is seen as a composition of black and white,
e White decomposes into white and white,

10



e Black decomposes into black and black.
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Fig. 9. Implementing a prism with one-way color converters

By interpreting a black/white vertex as a bit set on/off, the action of the prism
on vertex  can be seen as the writing in binary of its color C'(x) as the couple
(C'(high(x)),C(low(z))). As Fig. 9 shows, a prism is a simple application of
the dark one-way color-converter to obtain low(x) and the light one-way color
converter to obtain high(x).

? y
high(y) @ low(y) @
T/ \? the prism decomposes a color

high(x) /F+)+— _’A\hlgh(x ) into two pure binary colors
%B LD
Boolean crossover boxes

high(y’ ) - low(y’) have to deal with only two colors
instead of three
e y

Fig. 10. Implementing a parsimonious crossover-box using prisms

Secondly, high(z) and low(z) — resp high(y) and low(y) — are the colors we
will propagate rightwards — resp. downwards — to recompose them as a third
step into C(z') — resp. C(y') — by using the prism again. These vertical and
horizontal propagations will generate four edge crossings instead of the one we
tried to resolve initially, but since the propagated information is now Boolean
(one color, gray, has temporarily vanished), we expect that a parsimonious
resolution of the edge crossings will be easier, by introducing a new object:
the Boolean crossover-box.

Definition 23 (Boolean Crossover-Box) A Boolean crossover-box for a
vertex k-coloring problem (k > 2) is a planar gadget G with four distinguished
vertices x, y, ', y', embedded clockwise in this order along the boundary of the
outer-face of G, so that, given a two-colors palette Py C Py: (1) for any local
state C, we have C(x) = C'(2') and C(y) = C(y') and C(x),C(y) € Py, (2) for

11



any two colors Cy, C,, € Py there exists a local state C' such that C(x) = C,
and C(y) = C,,.

It turns out that the Boolean crossover-box will be parsimoniously imple-
mented by using essentially four one-way color converters: two dark ones and
two light ones.

4 The reduction from PLAN-1/3-SAT to PLAN-3-COL

We now address the details of our reductions and the implementation of our
gadgets. We first design the gadget that will propagate the palette reference
between the gadgets sharing the same face as explained in the sketch.

Exclusive crossover-box and pair-duplicator Recall from Fig. 4 that
when propagating the palette reference, the propagation of the gray color
crosses the propagation of the black color. However, We do not need a real
crossover-box here, because we know that the two colors to propagate are
different. This introduces the definition of a new object, namely the exclusive
crossover-box:

Definition 24 (Exclusive Crossover-Box) An exclusive crossover-box for
a vertex k-coloring problem is a planar gagdet G with four distinguished ver-
tices x, y, x', y', embedded in this clockwise order along the boundary of the
outer-face of G, so that: (1) for any local state C, C(a') = C(a) # C(V') =
C(b), and (2) for any two colors C,, Cy, € Py, such that C, # C) there exists
a local state C' such that C(a) = C, and C(b) = C,.

implementation local states
y

T

/& y’
y

©) @) O @)

x 0-4>0 x° o e oo 0o
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representation configurations

Fig. 11. Exclusive crossover-box

An exclusive crossover-box is trivially implemented by the diamond depicted in
Fig. 11. The reader can easily check that it exactly allows the six configurations
drawn, and one configuration corresponds to one local state, i.e., that the

12



gadget is parsimonious. In further figures, the exclusive crossover-box will be
symbolized by ¢ ). Chaining several exclusive crossover-boxes on a path or a
cycle as shown in Fig. 12 will allow us to duplicate a (b, g) pair into as many
copies as we need, and thus will allow us to propagate the palette reference
along the inner boundary of a face. Such a cycle is called a pair-duplicator and
will be symbolized by XX in further figures).

b g b g b g b g

O O O O ® O . Q

. Yoo T SR
go g0l _ .0 go gol._ .-
b < .  BOTTO b® . b0

Ty O e

o o fs}¥e] o e e

g b g b g b g b

representation implementation one of the configurations associated local state

Fig. 12. Pair-duplicator

We now address the implementation of color-converters. As a first step, the
converters will neither be one-way nor propagate the palette reference from
sector to sector. Indeed, each color of the palette will lie in a different sector.
This will be corrected as a second step.

The two-way color-converter. This gadget is depicted in Fig. 13. It has
four distinguished vertices x, b, 2’, ¢ embedded clockwise in this order, where
b and g are supposed to hold the two distinct colors of the palette reference,
that is resp. black and gray if we want a dark converter, or resp. white and
gray if we want a light one, as explained in the sketch. The gadget is parsi-
monious and its configurations are all the 3-colorings C' where C(z) and C'(z')
are equivalent colors with respect to the palette reference. More precisely, if,
say, C'(b) = black and C(g) = gray, the reader can easily check that all the
possible configurations (C'(z), C'(z")) are exactly the (white, white) configura-
tion and the four (dark, dark) configurations, i.e.: (black, black), (gray, gray),
(gray, black) and (black, gray). This converter is said two-way, because C'(x')
does not determine C'(z) in a (dark,dark) configuration, and conversely. In
further figures, it is represented with the © notation.

We now use the two-way color-converter to implement a one-way color-converter
that will furthermore propagate the palette reference through the line (z,2’).

The one-way color-converter. This gadget is depicted in Fig. 14. It has
two distinguished vertices z,z" plus two pairs (b, g) lying in each of the two
sectors defined by the line (z, z"). Note how the palette reference is propagated:
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representation implementation possible local states and configurations
X x i X X i X x i
©Q b ? b ° b
—= bo-<m —= be-<-m —= be <>m
b " . b K . b K
o J R | J o-Cm i
g j Y g 7 S g j Y
o-<pog o4O g -0 g
o & o J o J
X iTox x’ iox X iox
one (white, white) local state four (dark, dark) local states
(O and W are fixed ) for one (white, white) configuration for the four (dark, dark) configurations

@ iseither © or @
Fig. 13. Two-way (dark) color-converter

W.l.g. assume that the square vertices b and ¢ lying beneath the line (z,2’)
hold resp. black and gray; Then the three exclusive crossover-boxes recopy
black — resp. gray — in all other round vertices b — resp. g. All the pairs (b, g)
now hold the colors making both two-way colors converters behave as dark
color-converters. The reader can then easily check that the gadget is parsimo-
nious and its configurations are all the 3-colorings C' such that C'(z) # C(g)
and C(x) is equivalent to C'(z") with respect to the palette reference. More
precisely, with C'(b) = black and C'(g) = gray, the four possible configurations
(C(z),C(x")) are (white, white), (black, gray), and (black, black).

In further figures, this gadget will be represented by the [ notation.

implementation one (white, white) local state two (black, dark) local states
bo » .0 g be » .0 g be » ‘ O g
go ~0 b go @b go - eb
oo {poPoho | opofhoPo(ho, ebHoe()opoo()o
X i k.- x| X i 7 k.- X X i k. x’
g bm’ e bm’ e bm
bo Og ¢ be Og ¢ be Og ¢
o > o, | o > o, e > 9
X X X X X X
g0 Wy ¢ Wb ¢ Wb
representation one (white, white) configuration two (black, dark) configurations

@ iseither O or @

Fig. 14. One-way color-converter

The 1/3-clause simulator. This gadget is depicted in Fig. 15. It has three
distinguished vertices x, y, 2 embedded clockwise in this order plus three pairs
(b, g), each lying in one the three sectors defined by the vertices x, y, z. W.l.g.,
assume that one of the three pairs (b, g) is colored (black, gray), e.g., the one
lying in the bottom sector. Then, these colors are propagated to all the other
pairs (b, g) through the pair-duplicators and the one-way color-converters.
Therefore, these latter behave as dark color-converters. It is not difficult to
check that there are only three ways to color the triangle (i, 7, k), each one
coloring either ¢, 7 or k in white and the two other vertices of the triangle in
dark. The three dark one-way color-converters ensure that the gray vertex of
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the triangle will be converted into black (the converter connecting i to x is
useless because i is never gray but is left for the sake of uniformity). Thus, the
only configurations are the three 3-colorings C' such that (C(x),C(y),C(2))
is (black, white, black) or (black, black,white) or (white, black, black), i.e., the
gadget parsimoniously simulates a planar 1/3-clause (z,y,z) with the iden-
tification white = true and black = false. In further figures, the 1/3-clause
simulator will be represented by the -2 notation.

implementation local states

1/3—clause simulator configurations

Fig. 15. 1/3-clause simulator

The reduction itself and its proof. We address the reduction from PLAN-
1/3-SAT to PLAN-3-COL. Let ¢(V,C) be a PLAN-1/3-SAT instance and
G(V UC, E) be a planar formula-graph associated to ¢ along with an arbi-
trary planar embedding (we suppose G is connected for the sake of simplicity).
We create a 3-COL instance G’ from G that preserves the planarity of G and
with the same number of solutions:

(1) For each variable-vertex v € V, create a vertex m,.

(2) For each clause-vertex ¢ € C' with (c,i), (¢, j), (c,k) € E, create a 1/3-
clause simulator s, with distinguished vertices x = z;, y = z; and 2z = ;.
If 4, 7, k are in clockwise order around c for the chosen embedding, then
x, y and z should be also in clockwise order around s..

There are now a total of |3C| pairs (b, g) among the distinguished vertices
of the 1/3-clause simulators. We now want all the simulators to share the
same palette reference: Let F” be the set of faces of G’ corresponding to
the set of faces F' of G for the chosen embedding. For each face f € F'
create a pair-duplicator embedded in f by chaining all the pairs (b, g)
lying in f (see Fig. 16).

(3)

(To reduce 1/3-SAT to 3-COL, replace the second step by a simple fusion of
the |3C| secondary distinguished vertices b — resp. vertices g — connected to
the 1/3-clause simulators into a single vertex b — resp. g.)
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three 1/3—clauses C1, C2, C3 over variables u, v, w, X, y, z implementation
Fig. 16. Reduction from PLAN-1/3-SAT to PLAN-3-COL

The construction is a parsimonious reduction from PLAN-1/3-SAT to PLAN-
3-COL: Let (b, go) be an arbitrary pair among the pairs (b, g) connected to
one of the 1/3-clause simulators in the graph G'. Since b, and g, share a
common pair-duplicator, we necessarily have C'(by) # C(go) for any 3-coloring
C. Counting the non-isomorphic 3-colorings C' is equivalent to counting the
ones that verify C(by) = black and C(go) = gray. Since the input graph G is
connected, so is G’ and (black, gray) propagates to all the pairs (b, g) via the
pair-duplicators inside each face and via the 1/3-clause simulators across the
faces. By the parsimonious behavior of the 1/3-clause simulator in presence of
a (black, gray) reference palette, all the vertices z;, z;, x) sharing a 1/3-clause
simulator must be either white or black and exactly one must be white. Thus,
there is a bijection between the set of assignments I satisfying ¢ and the set
of 3-colorings C' such that C'(go) = gray and C(by) = black, i.e. a set of non-
isomorphic 3-colorings, with the correspondence I(v) = true <— C(z,) =
white and I(v) = false <= C(z,) = black. O

5 The reduction from 3-COL to PLAN-3-COL

We first address the implementation of the prism that will be used to build
our parsimonious crossover-box as explained in the sketch. This will be the
first time that we will need a color-converter behaving as a light one. Also, we
will need the prism in two symmetric embeddings.

The prism. This gadget is depicted in Fig. 17. It has three primary distin-
guished vertices x,low(x), high(z) embedded in this clockwise order around
the gadget, plus three pairs of vertices (b, ¢), each lying in one of the three sec-
tors of the gadget. Let C' be a satisfying 3-coloring for the prism and assume
w.l.g. that an arbitrary pair among the pairs (b, g) holds (black, gray), e.g., the
pair of square vertices lying in the bottom sector. This reference palette propa-
gates as usual except for the Eastern color-converter: This is (white, gray) that
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is propagated instead by this gadget to the Eastern pair (w, ¢g), hence making it
behave as a light color-converter as opposed to the Western dark converter. It
follows that: C'(z) = black implies (C'(high(x)),C(low(zx))) = (black, black),
C(z) = gray implies (C'(high(x)), C(low(z))) = (black, white), C(z) = white
implies (C'(high(z)), C(low(x))) = (white, white), and the gadget is parsimo-
nious. The prism will be represented by the 4= notation in further figures.
A “mirrored” prism where low(z) follows high(z) for the clockwise order is
similarly designed and will be represented by the -A: notation.

implementation the three local states
X X X X
IR o S o Y S o O, o O, o
g iowb g i w b g i w b g i w b
O ge) AL ©) @ AL ©) @ AL ©) @ A
— ] [& XN - ] & XN - & TN =y & XN
o .Ov o ° .Ov o ° .Ov o ° .Ov -
b fo v gt v 2 P v oz b g v
O O m o e O m ° ¢ O m o O O m o
High(x) g b Low(x) High(x) g b Low(x) High(x) g b Low(x) High(x) g b Low(x)
o X ® X o X o X
g0 ;.0 bJ g0. . @b /1 g0 @b J g0 @b J
b O‘;O g b .‘;O g b .‘;O g b .‘;O g
6o mo el me e moO 6o mo
High(x) g b Low(x) High(x) g b Low(x) High(x) g b Low(x) High(x) g b Low(x)
Prism(x)= (High(x), Low(x)) Prism( ® )= (® @)=Bin(0,0)=0  Prism( ©)= (® O)=Bin(0, 1)= 1 Prism( O )= (O O)=Bin(l, 1)=3
representation the three configurations

Fig. 17. Prism (here, high(x) follows low(z) for the clockwise order)

Combining an exclusive crossover-box with two dark color-converters and two
light color-converters now gives us the Boolean crossover-box needed to cross
each other the binary components of two colors decomposed by the prism.
Connected to a pair (b, g) holding (black, gray) for a 3-coloring C', the Boolean
crossover-box is able to cross any two (distinct or non distinct) non-gray colors.

The Boolean crossover-box. A parsimonious implementation of a Boolean
crossover-box with palette P, = {white, black} is depicted in Fig. 18, It has
four primary distinguished vertices z, y, 2/, 3y’ embedded clockwise in this
order, plus four pairs (b, g), each one lying in one of the four sectors of the
gadget. Let C' be a satisfying 3-coloring and assume, w.l.g, that one of the
pairs (b, g) holds (black, gray), e.g., the two square vertices. The gadget is
parsimonious and its behavior matches Def. 23) In further figures, it will be
represented by the # notation.

We have now all the necessary tools to parsimoniously implement our unre-
stricted crossover-box crossing any two colors (distinct or not) among three:
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Fig. 18. Boolean crossover-box

The unrestricted crossover-box. This gadget is depicted in Fig. 19, It
has four distinguished vertices x, y, z, ¢y’ embedded clockwise in this order plus
four pairs (b, g), each one lying in one of the four sectors of the gadget. Let C be
a 3-coloring of the gadget, and assume w.l.g., that one of the pairs (b, g) holds
(black, gray), e.g. the pair of square vertices. This reference-palette is propa-
gated as usual through the exclusive crossover-boxes, the pair-duplicators and
the prisms, so that all round pairs (b, g) also hold (black, gray): Thus, prisms
decompose colors into black and white and the four central Boolean crossover-
boxes cross binary (black/white) colors. Note that the two prisms connected
to x and gy’ have the mirrored embedding A so that their high and low slots
face the respective ones of the non-mirrored prisms 4 connected to 2’ and
y. Thus the prism connected to 2’ — resp. y — correctly recomposes the colors
decomposed by the prism attached to x — resp. 3’ — and propagated through
the two Boolean crossover-boxes lying in-between. If follows that for a given
reference palette, the built gadget has exactly the 9 expected configurations
depicted on the left of Fig. 19, each one corresponding to one local state. In
further figures, the unrestricted crossover-box will be represented by the &=
notation.

The reduction itself Let G(V = {vy,---,v,}, E) be a non-planar graph.
We want to compute in P-time a planar graph G'(V', E') with the same num-
ber of 3-colorings. Let M be the lower-left half adjacency matrix of G. M
has @ entries M, ;, 1 < j < i < n, with M;; = 1 iff (v;,v;) € E. The
embedding of G’ will follow the physical grid T of M drawn in the plane (see
Fig. 20):
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Fig. 19. Unrestricted crossover-box

Inside each square T;; of an entry M, ;, create an unrestricted crossover-box
B, ;, with one primary distinguished vertex embedded on each side of the
square. Two crossover-boxes sharing the common side of two squares also
share the distinguished vertex lying on this side. Also, any two crossover-
boxes Bji;; and B;; 1, 1 < i < n, share resp. their Northern and Eastern
distinguished vertices.

This ensures that the distinguished vertices in the row z; agree with the ones
on the line ¥, so that they are all representants of the vertex v,. Therefore,
for each edge e = (v;,v;) € E,i > j, one can create an edge (u,v) in G’ to
simulate e without breaking planarity with u and v being resp. the Eastern
and Southern distinguished vertices of the crossover-box B; ;, since u and v
are representants of resp. v; and v;.

INE

We now want that those crossover-boxes share the same palette-reference: For
any three crossover-boxes B; ;, B;y1j, B; i1, connect the North-Eastern pair
(b, g) of B;;, the South-Eastern one of B ;, and the South-Western one of
B, j4+1 with a common pair-duplicator.

Now, for a given palette-reference, say (gray,black), there are obviously ex-
actly as many 3-colorings in G’ as in G. But there are six possible palette-
references and we may choose one independently of the simulated 3-coloring,
i.e. the 3-coloring of the primary distinguished vertices. So, G' has six times
the required number of solutions. We remove these unwanted duplicates by
making the palette reference dependent of the simulated 3-coloring: Choose
an arbitrary edge (v;,v;) € E (this is (vy,v3) in Fig. 20), and let B, = B, ;
and B, = B; 1. Merge the Southern distinguished vertex of B, with the vertex
g of its South-Eastern pair (b, g), and merge the Western distinguished vertex
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of B, with the vertex b of its North-Western pair (b, g) (these are resp. i = 4
and j = 3 in Fig. 20). There are now exactly as many solution in G’ and in G.
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the non planar graph K(3,3)
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a planar graph with the same number of solutions its half adjacency matrix

Fig. 20. Parsimonious reduction from 3-COL to PLAN-3-COL

6 Conclusion

In this paper, we have proved that 3-COL and PLAN-3-COL are parsimo-
niously equivalent to the problem SAT, and hence, also capture accurately
the structure of the solutions of any problem in NP. This also yields new DP-
completeness results under random P-time reductions for 3-COL and PLAN-

3-COL.

Finally, it is interesting to note that our parsimonious reductions, from 1/3-
SAT (or SAT) to 3-COL on one hand, and from PLAN-1/3-SAT (or PLAN-
SAT) to PLAN-3-COL on the other hand, are computed in linear time on
RAMs, so they form a sequel to the results of [6,3,8,1,2] on linear reductions.
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A Proofs of the behaviors of the gadgets

Proof of the behavior of the two-way color-converter. Let C' be a
3-coloring for the two-way color converter and assume w.l.g. that the square
vertices b and g hold resp. black and gray (see Fig. 13). Then by the properties
of the exclusive crossover-box, the round vertices b and ¢ also hold resp. black
and gray, furthermore C'(i) = C(j) # black, and C(i') = C(j') # gray. There

are now two cases:

e Suppose C(i) = C(j) = gray (leftmost case in Fig. 13). Then, C'(k) = white
and C(i') = C(j') = black, and it follows that C(x) = C(z') = white.

e Suppose C'(i) = C(j) = white, (rightmost case in Fig. 13). Then C'(k) =
gray, C(k") = black, C(i') = C(j') = white, and it follows that C'(z) = dark
and C'(z") = dark, i.e., z and x’ can be black or gray, independently of each
other. [

Proof of the behavior of the one-way color-converter. Let C be a 3-
coloring for the one-way color-converter, and assume w.l.g that one of the pairs
(b, g) holds (black, gray), e.g., the pair of square vertices (see Fig. 14). Then,
by the properties of the exclusive crossover-box, all other round pairs (b, g)
also hold (black, gray) and furthermore C(j) = C(k) # black and C(z) =
C(i) # gray. Thus, both two-way color-converters behave as dark-converters.
There are now two cases:

e Suppose C(x) = white (leftmost case in Fig. 14). Then C(2') = C(k) =
C(j) = white, by the properties of the exclusive crossover-box and the
two-way dark-converter.

e Suppose C(z) = black (rightmost case in Fig. 14). Then C(i) = black,
C(j) = C(k) = gray, and finally C(z') = dark by the property of the
two-way dark-converter, i.e., ' can be either black or gray. [

Proof of the behavior of the PLAN-1/3-SAT clause simulator. Let C
be a 3-coloring for the clause simulator, and assume w.l.g that one of the pairs
(b, g) holds (black, gray), e.g., the pair of square vertices (see Fig. 15). These
colors propagate through the exclusive crossover-boxes, the pair-duplicators
and the one-way color-converters, and finally C'(g) = gray and C(b) = black,
for all round pairs (b, g). Thus, all the one-way converters behave as dark-
converters and one of those pairs coerces C(i) # gray and C(k) # black.
There are now three cases, depending on the color of j:
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e Suppose C(j) = white (leftmost case in Fig. 15), then C(i) = black,
C(k) = gray, and finally C(z) = black, C(y) = white, C(z) = black,
by the property of the one-way dark-converter.

e Suppose C(j) = black (central case in Fig. 15), then C(i) = white, C'(k) =
gray, and finally C'(x) = white, C(y) = black, C(z) = black, by the prop-
erty of the one-way dark-converter.

e Suppose C(j) = gray (rightmost case in Fig. 15), then C(k) = white,
C(i) = black, and finally C(z) = black, C(y) = black, and C(z) = white,
by the property of the one-way dark-converter. [l

Proof of the behavior of the prism. Let C' be a 3-coloring for the prism,
and assume w.l.g. that one of the pairs (b, g) holds (black, gray), e.g., the pairs
of square vertices (see Fig. 17). Then, these colors first propagate in the central
part of the gadget through the exclusive crossover-box and the pair-duplicator.
It also propagates through the Western one-way color-converter. The central
vertex w is then white since it shares a triangle with a pair (b, g). Thus, the
Eastern one-way color-converter is connected to a pair holding (white, gray),
and these colors are propagated through the converter to the Eastern pair
(w,g). Thus, the Eastern vertex b sharing a triangle with this pair (w,g) is
black, and finally, (black, gray) has been propagated to all round pairs (b, g).
Also notice that the Western color-converter behaves as dark converter while
the Eastern one behaves as a light converter. Both color-converters are one-
way and hence high(z) and low(x) cannot be gray. There are now three cases
depending on C(z):

e Suppose C(z) = black (leftmost case in Fig. 17). Then the dark converter
outputs C'(high(x)) = black, and the light converter outputs C'(low(z)) =
black.

e Suppose C(x) = gray (central case in Fig. 17). Then the dark converter
outputs C'(high(x)) = black, and the light converter outputs C(low(x)) =
white.

e Suppose C'(z) = white (rightmost case in Fig. 17). Then the dark-converter
outputs C'(high(z)) = white, and the light converter outputs C(low(x)) =
white. U

Proof of the behavior of the Boolean crossover-box. Let C be a 3-
coloring for the Boolean crossover-box and assume w.l.g, that one of the
pairs (b, g) holds (black, gray), e.g., the pairs of square vertices (see Fig. 18).
The palette-reference is propagated to all pairs (b, g) via exclusive crossover-
boxes, pair-duplicators, and one-way color-converters. Moreover, for all ver-
tices named w, C(w) = white since they share a triangle with b and g.
Note that both color-converters on the vertical line (y,y’) behave as light-
converters while both color-converters on the horizontal line (z,2') behave as
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dark-converters. The four color-converters are one-way, and hence z, vy, z', 3/
cannot be gray. Also, ¢ and ' cannot be white because they are adjacent to
w. Now, there are two main cases depending on C'(x):

e Suppose C(z) = white (leftmost cases in Fig. 18). Then the leftmost light-
converter outputs C'(i) = gray, the exclusive crossover-box outputs C(i') =
gray, and the rightmost light-converter outputs C(x') = white. There are
two subcases depending on C/(y):

- Suppose C(y) = white (upper leftmost case in Fig. 18). Then the upper
dark-converter outputs C'(j) = white, the exclusive crossover-box outputs
C(j") = white, and the lower dark-converter outputs C'(y') = white.

- Suppose C(y) = black (lower leftmost case in Fig. 18). Then the upper
dark-converter outputs C(j) = black (gray is excluded by the exclusive
crossover-box). The exclusive crossover-box outputs C(j') = gray, and
the lower dark-converter outputs C'(y') = black.

e Suppose C'(x) = black (rightmost cases in Fig. 18). Then the leftmost light-
converter outputs C(i) = black, the exclusive crossover-box outputs C(i') =
black, and the rightmost light-converter outputs C'(z') = black. There are
two subcases depending on C(y):

- Suppose C(y) = white (upper rightmost case in Fig. 18). Then the upper
dark-converter outputs C'(j) = white, the exclusive crossover-box outputs
C(j") = white, and the lower dark-converter outputs C'(y') = white.

- Suppose C(y) = black (lower rightmost case in Fig. 18). Then the upper
dark-converter outputs C(j) = gray (black is excluded by the exclusive
crossover-box). The exclusive crossover-box outputs C(j') = gray, and
the lower dark-converter outputs C'(y') = black. O

Proof of the behavior of the unrestricted crossoverbox. Let C be a
3-coloring for the unrestricted crossover-box, and assume w.l.g. that one of
the pairs (b, g) holds (black, gray), e.g. the pair of square vertices. Observe
that black and gray are resp. propagated to all round vertices b and ¢ via
the exclusive crossover-boxes, pair-duplicators, prisms and Boolean crossover-
boxes. C(z) is decomposed by the leftmost (mirrored) prism into C(l,) =
C(low(x)) and C(h,) = C(high(z)). Then C(l,) is propagated to {7 and [,
through the two lower Boolean crossover-boxes, and similarly C(h,) is prop-
agated to h! and h! through the two upper Boolean crossover-boxes. But
Il =low(z") and h!, = high(z"), the decomposition of C'(z') via the rightmost
(non-mirrored) prism, and therefore C'(z) = C(z'). Similarly, C(low(y)) =
_ !/ _ " _ " N _ _ ! _
CUM) — CUgtty) e il €10) €. Wo bonilude that the e
” :
has nine possible local states resp. corresponding to the nine configurations of
Fig. 19. O
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B The equivalence of (PLAN-)SAT and (PLAN-)1/3-SAT

In this appendix we briefly recall why (PLAN-)SAT and (PLAN-)1/3-SAT are
parsimoniously reducible each other.

Reducing (PLAN-)1/3-SAT to (PLAN-)SAT is trivial since any 1/3-clause
(x,y, z) can be parsimoniously simulated with three 2-clauses and one 3-clause:
—xV -y, ~yV -z, mzVox and £V y Vv z. Moreover the planarity is preserved
since to any 3-star of any simulated 1/3-clause corresponds the 3-star of its
fourth simulating clause embedded in the hexagon formed by its first three
simulating clauses.

In order to reduce (PLAN-)SAT to (PLAN-)1/3-SAT we build gadgets to
simulate Boolean operators. Figure B.1 shows the gadget NOR-EQV (with
variable vertices as rounds and 1/3-clause vertices as squares): This gadget,
which four distinguished vertices z, e, y, n embedded in this clockwise order, is
a “two in one”-gadget that simulates both the negated-or operator (NOR) and
the equivalence operator (EQV). More precisely, « and y are the input vertices
of the operator, e and n are the output vertices, and in any interpretation (1)
e=EQV(x,y), ie es (z<y),and (2) n = NOR(z,y), i.e., n & —=(x Vy).

implementation the four local states

X n y
e
)

e e e e e
xorY oy xo | gy xo+9 | oy xo- oy xorY oy
nor nor nor nor nor
O O [ ] [ ] [ ]

n n n n n
representation the four configurations

Fig. B.1. The NOR-EQV operator

Indeed, there are two cases:

e At least one of the three values 7, j and n is true (three first local states in
Fig. B.1). The gadget is symmetric, so w.l.g. let n be true (first local state
in Fig. B.1). Then z and i — resp. y and j — are forced to be false because
of the 1/3-clause (z,i,n) — resp. the 1/3-clause (y, j,n). Now, both i and j
being false, it follows that e must be true because of the 1/3-clause (e, i, j).
The two central local states are rotations of this first local state.

e All of the values i, j and n are false (last local state in Fig.B.1). Then the
1/3-clauses (z,i,n), (y,7,n) and (e, i,7) resp. coerce that x, y and e be all
true.
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The set of configurations is summed-up by the following-truth table:

T Y n e

false false|true true
true false|false false

false true |false false

true true |false true

One can check that all true/false combinations for x and y are possible,
so n and e can be seen as functions of x and y with n = NOR(z,y) and
e = EQV (z,y) as stated above.

Though the NOR operator is complete for propositional logic, we design two
other operators in 1/3-SAT for more convenience. The NOT operator is shown
on the left of Fig. B.2: it has two distinguished vertices x and n and parsimo-
niously coerces that n < —ux.

not — implementation not — the two local states const — implementation const — the local state

X O not O n X O not ® n X ® O n t O o f t O e f

not — representation not — the two configurations const — representation const — the configuration

Fig. B.2. The NOT operator and the CONST operator

There are two cases:

e Suppose j is false. Then, either i or k is true by the 1/3-clause (i, 7, k).
The gadget being symmetric, assume w.l.g. that ¢ is true and k is false. By
the 1/3-clause (z,7,n), it follows that both z and n are false, and finally &
must be true by the 1/3-clause (z, k,n). A contradiction.

e So, j is always true, and i and k are always false. And both 1/3-clauses
(x,i,n) and (y, j, n) coerces that exactly one of z and n is true, i.e. n < —uz.

Note that since j is always true, merging the vertices x and j of the gadget
NOT eliminates the configuration where x is false. This way, one obtains the
gadget CONST shown on the right of Fig. B.2. This gadget has two distin-
guished vertices ¢t and f and only one configuration, with ¢ being the constant
true and f the constant false.

The operator OR is built by chaining the gadget NOR with the gadget NOT,
and a clause of arbitrary length is built by chaining several OR operators
as in Fig. B.3, the terminal output vertex of the chain being connected to
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a gadget CONST, coercing the clause to be satisfied. The construction is
obviously parsimonious and also preserves the embedding of the simulated
clause, so the simulation of all the clauses of any (planar) input SAT instance
will yield a (planar) 1/3-SAT instance with as many solutions. This completes
the reduction from (PLAN-)SAT to (PLAN)-1/3-SAT.

w X y z
0

Q O
Cofeav]  © fev) 0 feav) o

6 e o o

Fig. B.3. Simulation of the clause (w V -z V =y V 2z) with PLAN-1/3-SAT
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C The equivalence of 1/3-SAT and PLAN-1/3-SAT

In this section, we give direct arguments to show that 1/3-SAT and PLAN-1/3-
SAT are parsimoniously reducible each other: The reduction from PLAN-1/3-
SAT to 1/3-SAT is the identity, and finding the converse reduction boils down
to finding a parsimonious crossover-box. An implementation of this gagdet is
obtained by connecting four gadgets NOR-EQV (as defined in the previous
section) in the way of Fig. C.1. This gadget has four distinguished vertices z,
y, ' and 2’ embedded in this clockwise order. This gadget parsimoniously co-
erces any two distinguished vertices lying in opposite corners to be equivalent
independently of the assignment of the other two distinguished vertices.

implementation the four local states
x v X yoox yoox yoox y
© ¢ * * © ¢ © *
z8 z(8 =8 2|8 s z(8 =8 2|8 s z 8
< Q g < Q 3= Sl< Q gl= Q< A4 3= Q< b4 g =
o o . . o o . S 5 .
y’ x’ y x’ y’ x’ y x’ y’ x’
X y X y X y X y X y
Q (6] L] ] (6] O Q ] [ (6]
o o . 0 o o . o o .
y X y X y X y X y X

representation the four configurations

Fig. C.1. Crossover-box for PLAN-1/3-SAT

Note that the central vertex is connected to the EQV slot of all the gadgets
NOR-EQYV. So, there are two cases:

e The central vertex is true: Then the vertices x, 2', y, ' are all equivalent,
i.e., either all false or all true. This yields the two leftmost configurations
(false, false, false, false) and (true, true, true, true) on Fig. C.1.

e The central vertex is false: Then x is not equivalent to y which itself
is not equivalent to x’. So z and 2’ turn out to be equivalent. Similarly
y and y' are equivalent, and this yields the two rightmost configurations
(false, true, false, true) and (true, false,true, false) on Fig. C.1.

Therefore, the gadget is a parsimonious crossover-box for PLAN-1/3-SAT, and
can be used in the usual way to reduce parsimoniously 1/3-SAT to PLAN-
1/3-SAT in quadratic time.
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D The reduction of (PLAN-)3-COL to (PLAN-)1/3-SAT

It is easy to reduce 3-COL to 1/3-SAT. The constraint that any vertex of
the input graph is colored with exactly one color among three is conveniently
simulated with 1/3-clauses: For each vertex x in the input graph, create three
variables w(z), g(z) and b(x) — meaning that x is resp. colored white, gray
and black — and create a 1/3-clause (w(z), g(x),b(x)). Now for a given color ¢

and a given edge (x,y), we want that exactly one of the three erclusive cases
holds:

e 1z has the color ¢,
e y has the color c,
e neither z nor y have the color c,

so the constraint that any two adjacent vertices have distinct colors is ex-
pressed by three 1/3-clauses per edges: For each edge (x,y) of the input
graph, create the vertices w(z,y), g(x,y) and b(x,y) — meaning that neither
x nor y are colored resp. white, gray and black — and create the 1/3-clauses
(w(z), w(z,y), w(y)), (9(2), 9(z,y), 9(y)) and (b(x), b(z,y),b(y)). See Fig. D.1
This nearly ends the parsimonious reduction from 3-COL to 1/3-SAT: we must
remove the isomorphic solutions of the 3-COL instance. This is done by choos-
ing an arbitrary edge (u,v) of the input graph and by forcing the 3-coloring
of u and v to, say resp. white and black, which is simulated by connecting
w(u) and b(v) to the distinguished vertex ¢ of a gadget CONST, as defined in
Appendix B.1.

X wx)  g(x)  bx) X
w(x,y)| g(x.y) | b(x.y)
(6] — — N
X
wx)  gx)  b(x)
y w(y) gly) by y
a vertex in simulation of the vertex an edge in simulation of the edge a 3—coloring
a 3—COL instance with a 1/3—clause a 3—COL instance with 1/3—clauses along an edge its simulation

Fig. D.1. Reduction from 3-COL to 1/3-SAT

The planarity is not preserved because of the explosion of each vertex into
three variables, which makes the 1/3-clauses simulating distinct edges incident
to x overlap. In order to reduce PLAN-3-COL to PLAN-1/3-SAT, one also
creates three variables per vertex x — namely w(z), g(x), b(x) — connected by
a 1/3-clause (w(z), g(x),b(x)), but we also duplicate them as many times as
the degree d(z) of vertex x into new variables w;(z), g;(z), b;(x), 1 < i < d(n),
the " 3-uple being denoted slot;(z) as a whole. The duplication is done by
chaining the parsimonious crossover-box for PLAN-1/3-SAT (see Appendix
C) as in Fig. D.2. Note that the clockwise order for slot;(z) is b;(), g;(x) and
then b;(x).
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wl(x) gl(x) bl(x) w2(X) g2(x) b2(x) w3(x) 23(x) b3(x)

g(x)

slot 1 (x) slot 2 (x) slot 3 (x)

Fig. D.2. Duplication of color slots

Now, each edge (x,y) of the input graph can be associated with a pair of slots
(slot;(x), slot;(y)) with respect to the chosen embedding: For each such edge,
we create the three vertices w(z,vy), g(z,y),b(x,y). However, one cannot di-
rectly create the three 1/3-clauses (w;(z), w(z,y), w;(v)), (g:(x), g(z,y), g;(v))
and (b;(x), b(x,y),b;(y)), to simulate the edge (, y) because both slots slot;(x)
and slot;(y) have the same clockwise order for b, g,w and they face each
other. So, one of the two slots, say slot;(x) must be “twisted” to reorder
bi(x), gi(x), w;(x) in counterclockwise order. This is done by using three crossover-
boxes as in Fig. D.3, where b.(x), ¢i(x), w}(x) are now in counterclockwise or-
der. We can now create the 1/3-clauses (w}(x), w(z,y),w;(y)), (gi(x), 9(z,y), g;(v))
and (b}(x),b(z,y),b;(y)), to simulate any edge (z,y). Finally, choosing an ar-
bitrary edge (u,v) of the input graph and connecting w(u) and b(u) to the
distinguished vertex ¢ of a gadget CONST ends the parsimonious reduction
from PLAN-3-COL to PLAN-1/3-SAT.

w(x) g’ (x) w(x)
o R LTI R i e @
g0 o O ppp0 Ho0 e
Opvrevreermsmmmmeresesies R 0
b(x) W (X) b (x) b’(%)

Fig. D.3. Reversal of the clockwise order of the color slots
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