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Abstrat

We prove that the Satis�ability (resp. Planar Satis�ability) problem is parsimo-

niously P-time reduible to the 3-Colorability (resp. Planar 3-Colorability) prob-

lem, that means that the exat number of solutions is preserved by the redution,

provided that 3-olorings are ounted modulo their six trivial olor permutations.

In partiular, the uniqueness of solutions is preserved, whih implies that Unique

3-Colorability is exatly as hard as Unique Satis�ability in the general ase as well

as in the planar ase. A onsequene of our result is the DP-ompleteness of Unique

3-Colorability and Unique Planar 3-Colorability under random P-time redutions.

It also gives a �ner and uni�ed proof of the #P-ompleteness of #3-Colorability

that was �rst obtained by Linial for the general ase, and later by Hunt et al. for

the planar ase. Previous authors' redutions were either weakly parsimonious with

a multipliation of the numbers of solutions by an exponential fator, or involved

#P-omplete intermediate ounting problems derived from trivial \yes"-deision

problems.

1 Introdution

Parsimonious redutions { i.e., P-time redutions that preserve the exat num-

ber of solutions of the input problem { are interesting for at least two reasons:

(1) Suh redutions generally preserve the struture of the solutions, sine they

realize in pratie a bijetive orrespondene between the sets of solutions that

is P-time omputable [4℄, and (2) Suh redutions not only allow to prove #P-

ompleteness results for ounting problems [15℄ but also DP-ompleteness re-

sults for deision problems asking about the existene of unique solutions [16℄.

Many P-time redutions between NP-omplete problems are indeed parsimo-

nious. In partiular, it is signi�ant to note that the generi redution that
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proves the NP-hardness of the Satis�ability problem (SAT) is easily made par-

simonious, whih means that SAT aurately aptures the struture of any NP

problem.

This is not true for all NP-omplete problems however, to begin with the ones

whose sets of solutions display intrinsi symmetries, e.g. graph 3-Colorability

1

(3-COL). Typially, eah solution of any instane of 3-COL indues six solu-

tions that are isomorphi under olor permutations. Therefore, the number

of 3-olorings of any instane of 3-COL is trivially a multiple of six. Another

example is the problem alled Not-All-Equal-In-3-Positive-Sat (NAE-3-SAT),

whih asks whether a given onjuntion of positive 3-lauses has an assignment

for whih eah 3-lause ontains at least one true literal and one false literal.

Eah solution of NAE-3-SAT indues two solutions that are isomorphi under

bitwise negation, so the number of solutions of every instane of NAE-3-SAT

is trivially even. Of ourse, no suh symmetry happens for SAT, and for any

�xed integer k, it is easy to build SAT instanes with exatly k solutions. As

an obvious onsequene, no parsimonious transformation an exist from SAT

to 3-COL (or to NAE-3-SAT).

However, one an naturally regard a group of isomorphi solutions as only

one solution, and ount the solutions aordingly. With this new ounting

onvention, the argument does not hold anymore and one an naturally asks

whether parsimonious P-time transformations exist from SAT to 3-COL (resp.

to NAE-3-SAT). Also, it now makes sense to ask if a given 3-COL or a NAE-3-

SAT instane has a unique solution (problems U-3-COL and U-NAE-3-SAT),

and exhibiting the redutions above would imply that U-3-COL (resp. NAE-

3-SAT) is as hard as deiding if a SAT instane has a unique satisfying as-

signment (problem U-SAT).

From now on, we shall always onsider any group of isomorphi solutions as

only one solution: Interestingly, it is already known that a parsimonious redu-

tion from NAE-3-SAT to SAT does exist under our ounting onvention, sine

Creignou and Hermann [5℄ parsimoniously redued 1-Exatly-In-Positive-3-

Sat (1/3-SAT) to NAE-3-SAT. The link to SAT itself is done via the following

result, whose proof an be found in [9℄ or alternatively in Appendix B of this

paper:

Proposition 1 1/3-SAT and SAT are parsimoniously reduible eah other.

However, we are not aware of a similar result for the more interesting prob-

lem 3-COL. Indeed, the lassial redutions from SAT to 3-COL, e.g., the

one presented by Kozen [11℄, are not even weakly parsimonious, i.e., they

do not even establish any preise relation between the number of solutions

of the instanes, beause the 3-olorings are dupliated without any ontrol.

1

Terms in italis are formally de�ned in Setion 2.
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However, a weakly parsimonious redution from SAT to 3-COL an be ob-

tained by omposing three transformations: the parsimonious redution from

SAT to 1/3-SAT, Creignou and Hermann's parsimonious redution from 1/3-

SAT to NAE-3-SAT [5℄, and Dewdney's weakly parsimonious redution from

NAE-3-SAT to 3-COL [6℄. While this weak parsimony together with the #P-

ompleteness of #SAT is suÆient to imply the #P-ompleteness of #3-COL

2

it gives no lue about the expressiveness of U-3-COL ompared to the one of

U-SAT, beause Dewdney's redution multiplies the solutions by an exponen-

tial fator.

The same questions an naturally be addressed for the planar versions of those

problems. Note that:

Proposition 2 PLAN-1/3-SAT and PLAN-SAT are parsimoniously reduible

eah other,

sine the transformations between SAT and 1/3-SAT preserve the planarity

of the graphs. Also, it is well known that:

Proposition 3 Planar Satis�ability (PLAN-SAT) and SAT are parsimoniously

reduible eah other.

This was established by Lihtenstein by using a well-known parsimonious

rossover-box eliminating the potential edge rossings [12,9℄. Alternatively,

one an take advantage of the parsimonious equivalene of SAT and 1/3-

SAT on one hand, and of PLAN-SAT and PLAN-1/3-SAT on the other hand,

to establish this equivalene by a parsimonious redution from 1/3-SAT to

PLAN-1/3-SAT whih is presented in Appendix C for the sake of omplete-

ness.

As far as PLAN-NAE-3-SAT and PLAN-3-COL are onerned, the former is

a trivial \Yes"-problem, as an easy onsequene of the Four-Colors Theorem

in planar graphs, whereas 3-COL remains NP-omplete in the plane. The

lassial redution from 3-COL to PLAN-3-COL eliminates the edge rossings

by using a well-known non-parsimonious rossover-box [14,11,7℄. Hunt et al.

modi�ed this rossover-box in [10℄ to make it weakly parsimonious and hene

proved the #P-ompleteness of #PLAN-3-COL via a weakly parsimonious

redution from 3-COL to PLAN-3-COL, with a multipliation of the number

of solutions by an exponential of the square of the size of the input.

2

#3-COL was earlier shown to be #P-omplete by Linial [13℄, but not from the

#P-ompleteness of #SAT. This was done under a parsimonious P-time transfor-

mation from the #P-omplete problem #STABLE in bipartite graphs to #3-COL

in bipartite graphs, that are ounting problems whose assoiate deision problems

are both trivial \Yes"-problems.
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Thus, to our knowledge and even with our natural ounting onvention, no

parsimonious redutions are known till now neither from 3-COL to PLAN-3-

COL nor from SAT to 3-COL, let alone from PLAN-SAT to PLAN-3-COL. In

partiular, the hardness of U-3-COL and U-PLAN-3-COL are open problems.

In this paper, we show that suh redutions do exist:

Proposition 4 3-COL is parsimoniously reduible to PLAN-3-COL in quadrati

time, and in partiular U-3-COL is so reduible to U-PLAN-3-COL.

Proposition 5 SAT is parsimoniously reduible to 3-COL in linear time, and

in partiular U-SAT is so reduible to U-3-COL.

Proposition 6 PLAN-SAT redues parsimoniously to PLAN-3-COL in lin-

ear time, and in partiular U-PLAN-SAT is so reduible to U-PLAN-3-COL.

PLAN−NAE−SAT

PLAN−3−COLPLAN−SAT

PLAN−1/3−SAT

1/3−SAT

NAE−SAT

SAT 3−COL

General Case

Planar Case

("yes"−problem)

parsimonious

weakly parsimonious

(with exponential factor of duplication)

Parsimonious reductions in this paper:

non−trivial, presented in the body

Reductions in the literature:

easier, presented in the Appendices

Fig. 1. Redutions towards 3-COL and parsimony

Figure 1 sums up the ontributions of this paper. Sine the easier onverse

linear redutions from (PLAN-)3-COL to (PLAN-)1/3-SAT also exist, that

implies in partiular that U-3-COL and U-SAT (resp. U-PLAN-3-COL and

U-PLAN-SAT) have exatly the same time omplexity up to a onstant mul-

tipliative fator. Furthermore, the delays between the output of two onseu-

tive solutions during an enumeration of all the solutions are preserved up to a

multipliative onstant. As far as polynomial time omplexity lasses are on-

erned, this gives �ner and uni�ed proofs of the #P-ompleteness of #3-COL

and #PLAN-3-COL. Also, sine U-SAT and U-PLAN-SAT are both known

to be omplete problems in the lass DP under random P-time redutions [9℄,

we onlude that:

Corollary 7 3-COL, PLAN-3-COL, SAT and PLAN-SAT are equivalent un-

der parsimonious redutions, and hene U-3-COL and U-PLAN-3-COL are

DP-omplete under random P-time redutions.

The paper is organized as follows: Setion 2 presents all the de�nitions of

tehnial terms used in the paper. A number of tools will have to be designed

to reah our goal. Setion 3 skethes their high level behavior and explains

how we expet them to interat in the big piture. To show the parsimonious

equivalene of (PLAN-)SAT and (PLAN-)3-COL, we take advantage of the
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parsimonious equivalene of SAT, PLAN-SAT, 1/3-SAT and PLAN-1/3-SAT

and we only have to parsimoniously redue (PLAN-)3-COL to (PLAN-)1/3-

SAT. Setion 4 is devoted to the details of this redution and to the imple-

mentation of most of the tools skethed in Setion 3. The omplete proofs of

the behaviors of those gadgets are presented in Appendix A. The onverse

redution from (PLAN-)3-COL to (PLAN-)1/3-SAT is shown in Appendix D.

Finally, we show in Setion 5 that we an derive a parsimonious rossover-box

for PLAN-1/3-COL from our tools, hene improving the weakly parsimonious

rossover-box of [10℄. This gives a diret parsimonious redution from 3-COL

to PLAN-3-COL (i.e., without using 1/3-SAT and PLAN-1/3-SAT as inter-

mediate problems).

2 Preliminaries and De�nitions

We now reall the studied satis�ability/olorability problems, the involved

omplexity lasses, and the tehnial tools and onepts used in the whole

paper.

De�nition 8 (Problem SAT) Input: a CNF formula '(V; C) with a list

of lauses C over the set of variables V . Question: does V admit a truth-

assignment suh that at least one literal per lause in C is assigned true?

De�nition 9 (Problem NAE-3-SAT) Input: a CNF formula '(V; C) of

positive 3-lauses (i.e. lauses of length 3 with no negative literals) over the

set of variables V . Question: does V admit a truth-assignment suh that eah

lause in C ontains at least one true variable and one false variable, i.e.,

suh that not all variables are equal in any lause?

De�nition 10 (Problem 1/3-SAT) Input: a CNF formula '(V; C) of pos-

itive 3-lauses (i.e. lauses of length 3 with no negative literals) over the set

of variables V . Question: does V admit a truth-assignment suh that exatly

one variable per lause in C is assigned true?

De�nition 11 (Formula-Graph and Planar Formula) The formula-graph

G(') of a CNF formula '(V; C) where C is a list of lauses over the set of vari-

ables V , is de�ned as the bipartite graph G(V

0

[C

0

; E), with V

0

= fx

v

; v 2 V g

and C

0

= fx



;  2 Cg and E = f(x

v

; x



);  2 C; v 2 g. If G is planar, then '

is alled a planar formula.

We now see the SAT-like problems above as vertex 2-oloring problems of the

Formula-graphs of their inputs, with the two olors true and false.
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De�nition 12 (Vertex k-Coloring) A vertex k-oloring of a graph G(V;E)

is a funtion C : V �! P

k

(where the k-palette P

k

is a set of k olors).

De�nition 13 (Problem 3-COL) Input: a graph G(V;E). Question: Does

a 3-oloring of the verties C : V �! P

3

where P

3

= fwhite; gray; blakg

exist so that for all (x; y) 2 E, C(x) 6= C(y)?

De�nition 14 (Isomorphi Colorings) Let G(V;E) be a graph, and C

1

,

C

2

be two vertex olorings of G with the palette P

k

= f1; � � � ; kg. C

1

and C

2

are isomorphi if there exists a olor permutation � : P

k

�! P

k

suh that for

all x 2 V , C

1

(x) = �(C

2

(x)).

3-COL and NAE-SAT are examples of vertex oloring problems with trivial

olor isomorphisms. We now de�ne the planar versions, ounting versions and

\unique" versions of the deision problems ited above:

De�nition 15 (Problem PLAN-�) For any problem � on graphs, its pla-

nar version PLAN-� is de�ned as the restrition of � to planar inputs.

De�nition 16 (Problems #� and U-� assoiated to a problem �) For

any deision problem � on input I, the ounting version #� is the problem

asking the number of distint solutions of I for �, and its \unique" version

U-� is the problem asking whether I has a unique solution for �. For the

oloring problems ited above, a solution is a vertex oloring (in partiular,

a truth assignment for SAT-like problems). For problems whose sets of solu-

tions have trivial symmetries (e.g. 3-COL and NAE-3-SAT), two isomorphi

olorings are ounted as one oloring.

De�nition 17 (lass DP) A property belongs to the lass DP if it is the

onjuntion of an NP property and a o-NP property.

In partiular, U-SAT and U-3-COL belong to DP sine they ask on one hand

whether at least one solution exists, and on the other hand whether no two

solutions exist.

De�nition 18 (Parsimonious and Weakly Parsimonious Redutions)

A P-time redution R from problem �

1

to problem �

2

is weakly parsimonious

if, for eah instane I

1

2 �

1

, its number of solutions #I

1

for problem �

1

is equal to f

R

(I

1

) � #I

2

, where I

2

= R(I

1

), #I

2

is the number of solutions

of I

2

for �

2

, and f

R

is a P-time omputable funtion. R is parsimonious i�

#I

1

= #I

2

(i.e., f

R

(I

1

) = 1).

Our parsimonious redutions will use the following notions:

De�nition 19 (Gadget and Distinguished Verties) A gadget is a on-

neted graph G(V;E) used to build a supergraph G

0

(V

0

� V;E

0

� E). The
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distinguished verties x

1

; � � � ; x

p

of G are the only verties v 2 V that are

allowed to be adjaent to verties in V

0

� V . If G

0

is planar, then G must be

planar itself, and x

1

; � � � ; x

p

must all lie on the boundary of the outer fae of

G in a spei�ed lokwise order.

De�nition 20 (Loal States and Con�gurations) Let G be a gadget with

distinguished verties x

1

; � � � ; x

p

and � be a vertex k-oloring problem. A loal

state of G is a satisfying k-oloring of G, and a on�guration is the restri-

tion of a loal state to x

1

; � � � ; x

p

. Notie that one on�guration may generally

expand into several distint loal states.

De�nition 21 (Parsimonious and Weakly Parsimonious Gadget) Let

G be a gadget and � be a vertex k-oloring problem. G is a weakly parsimo-

nious gadget if there exists a onstant s 6= 0 suh that eah satisfying on�g-

uration C of G for � expands to exatly s distint loal states. The gadget is

parsimonious i� s = 1, i.e., if there is a one-to-one orrespondene between

its on�gurations and its loal states.

3 Sketh of the redutions and their main tools

Our redutions from (PLAN)-1/3-SAT to (PLAN)-3-COL and from 3-COL to

PLAN-3-COL are rather triky and involve sophistiated gadgets. Therefore,

we �rst present a simpli�ed high-level view of the behaviors of our main gad-

gets and of the whole redutions. Fortunately the priniples of the onstrution

are modular and rather simple.

3.1 From PLAN-1/3-SAT to PLAN-3-COL

We want to design a planarity-preserving and parsimonious P-time redution

R from 1/3-SAT to 3-COL with the palette P

3

= fwhite; gray; blakg. In the

rest of this paper, blak and gray are both alled dark olors. Similarly, white

and gray are both alled light olors.

The main task is to design a 3-COL gadget to simulate a 1/3-SAT lause, i.e.,

a positive lause of length three that onstrains exatly one of its variables to

be assigned true. Eah of the three variables of the lause will be represented

by one vertex. However, we must �nd a orrespondene between Booleans (2-

states objets) and olors (3-states objets). We hoose that dark olors (i.e.,

blak and gray) represent false, and white represents true. Furthermore, for the

sake of parsimony, the false should always be represented by blak in the \user
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interfae", i.e., in the distinguished verties of the 1/3-SAT lause simulator,

whereas gray may appear in the \implementation side" of the gadget.

converter
dark one−waydark one−way dark one−way

converter converter
yx y x yx

Fig. 2. Mapping Boolean values to olors by substitutability of dark olors

So, we need an objet suh as in Fig. 2 that implements this feature of sub-

stitutability between dark olors with respet to the false value. This gadget,

alled dark one-way olor-onverter binds two distinguished verties x and y,

with x being on the \interfae side" (i.e., x annot be gray), and y being on the

\implementation side" (i.e., y may be gray). For any satisfying 3-oloring C,

this onverter oeres C(x) and C(y) to represent equivalent Boolean values,

i.e., the gadget must exatly allow the on�gurations (C(x); C(y)) that are

either (blak; blak) or (blak; gray) or (white; white).

A parsimonious implementation of the dark one-way olor-onverter will give

us the high-level sheme to implement parsimoniously the 1/3-SAT lause

simulator in the way of Fig. 3. The reader an easily hek that exatly one

of the verties x, y and z must be white and that the two other verties must

be blak.

"x is true, y and z are false" "y is true, x and z are false" "z is true, x and y are false"

forbid
gray

black
forbid

forbid
gray

black
forbid

forbid
gray

black
forbid

y

z

x

y

z

x

y

z

x
dark one−way

converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

Fig. 3. Simulating a 1/3-SAT lause

The fat that olors play asymmetrial rôles (there are two dark olors to

represent the false and only one white olor to represent the true) requires

that the implementations of all the gadgets must use this palette onvention.

It means that we will have to onnet eah gadget to two seondary distin-

guished verties b and g holding resp. the blak and the gray representations

of the false and lying in the setor formed by two onseutive primary distin-

guished verties. The additional requirement that planarity be preserved will

ompliate the design of our gadgets sine they will play an additional rôle

beside their primary behaviors: Eah gadget should propagate the referene

palette { i.e., the olors held in the pair (b; g) { to all the other setors of the

gadget (into verties also named b and g for simpliity), as shown in Fig. 3.

This way, gadgets lying in the viinity of another gadget an use its referene

palette if needed and propagate it further themselves. as shown in Fig. 4. In

order that all the gadgets follow the same onvention, we deide that in eah

setor of a gadget, g will follow b for the lokwise order around the gadget.
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g

bg

b

bg g b

the palette reference should propapagate
to all gadgets sharing the same faceto all sectors of the  gadget

black box

gadget’s gadget’s

black box

additional distinguished vertices
holding the palette reference

primary distinguished vertices the palette reference should propagate

Fig. 4. Propagating the palette referene through and between gadgets

Interestingly, the need of a onnetion to a palette referene allows to reate

gadgets with new behaviors at no ost just by hanging the ontent of the

palette. This is partiularly true for olor onversion. Normally, a dark olor

onverter is always onneted to a pair (b; g) holding the dark palette referene

(blak; gray). However, if we deide to store the light olors (white; gray) in-

stead, then we obtain a new gadget, the light one-way olor-onverter, allowing

a substitutability between light olors as depited in Fig. 5 (to be ompared

to Fig. 2). This behavior will be used in the next redution.

converter converter converter
yx y x yx

light one−way light one−way light one−way

Fig. 5. Substitutability of light olors

3.2 From 3-COL to PLAN-3-COL

Finding a parsimonious redution 3-COL to PLAN-3-COL essentially onsists

in exhibiting a parsimonious rossover-box to resolve edge rossings as depited

in Fig. 6: A rossing between edges (x; u) and (y; v) is resolved by replaing

the two edges by a rossover with distinguished verties x, y, x

0

and y

0

and by

reating two edges (x

0

; u) and (y

0

; v). The behavior of a rossover-box an be

de�ned as follows:

De�nition 22 (Crossover-Box) A rossover-box for a vertex k-oloring prob-

lem is a planar gadget G with four distinguished verties x, y, x

0

, y

0

, embedded

lokwise in this order along the boundary of the outer-fae of G, so that:

(1) for any loal state C, C(x) = C(x

0

) and C(y) = C(y

0

), and (2) for any

two olors C

x

; C

y

2 P

k

(possibly equal), there exists a loal state C so that

C(x) = C

x

and C(y) = C

y

.

Crossover-boxes for 3-COL that exist in the literature are weakly parsimonious

at best: The standard rossover-box one �nds in the omplexity books [14,11,7℄

is not parsimonious as shown in Fig. 7: Eah on�guration oloring x and y
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removal of the crossing

y’y’

x’

x x’

y

v

x

y

x u u

edge crossing

y

v

crossover−box

Fig. 6. Resolving edge rossings with rossover-boxes

with the same olor expands into two loal states whereas eah on�guration

oloring x and y with distint olors expands into one loal state.

y

x’

y’

x

y’

y

x’

y

x’

y’

x

y

y’

x’xx’

y’

y

x

two possible  local states

x

one local statebicolored configurationmonocolored configuration

Fig. 7. Standard non-parsimonious rossover-box for PLAN-3-COL

This rossover-box was improved by Hunt et al. to make it weakly parsimo-

nious [10℄: As shown in Fig. 8, eah on�guration expands into two loal states,

whether it olors x and y with the same olors or not. This implies that redu-

ing a 3-COL instane with n verties and  edge rossings to a PLAN-3-COL

instane by using  rossover-boxes will multiply the number of solutions by

2



where  may be as large as �(n

2

).

monocolored configuration bicolored configuration

y

y’

x x’ x

y

y’

x’

y

x’

y’

x

y

x’

y’

x

two possible local states
is either or

x

y

y’

x’

two possible local states

Fig. 8. Hunt et al. 's weakly parsimonious rossover-box for PLAN-3-COL

A parsimonious rossover-box for PLAN-3-COL is hard to onstrut diretly,

so we will not propagate the olors C(x) rightwards and C(y) downwards

diretly. Instead, we will proeed in three steps as shown in Fig.10:

First, using a gadget alled the prism, we deompose the olors C(x) { resp.

C(y) { into two pure olors, stored in verties low(x) and high(x) { resp.

low(y) and high(y). Our two pure olors are blak and white. Therefore:

� Gray is seen as a omposition of blak and white,

� White deomposes into white and white,
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� Blak deomposes into blak and blak.
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Fig. 9. Implementing a prism with one-way olor onverters

By interpreting a blak/white vertex as a bit set on/o�, the ation of the prism

on vertex x an be seen as the writing in binary of its olor C(x) as the ouple

(C(high(x)); C(low(x))). As Fig. 9 shows, a prism is a simple appliation of

the dark one-way olor-onverter to obtain low(x) and the light one-way olor

onverter to obtain high(x).

y’

y

x x’

instead of three

into two pure  binary colors

Boolean crossover boxes
have to deal with only two colors

high(y)

high(x)

low(x)

low(y)

low(x’)

high(x’)

high(y’) low(y’)

the prism decomposes a color

Fig. 10. Implementing a parsimonious rossover-box using prisms

Seondly, high(x) and low(x) { resp high(y) and low(y) { are the olors we

will propagate rightwards { resp. downwards { to reompose them as a third

step into C(x

0

) { resp. C(y

0

) { by using the prism again. These vertial and

horizontal propagations will generate four edge rossings instead of the one we

tried to resolve initially, but sine the propagated information is now Boolean

(one olor, gray, has temporarily vanished), we expet that a parsimonious

resolution of the edge rossings will be easier, by introduing a new objet:

the Boolean rossover-box.

De�nition 23 (Boolean Crossover-Box) A Boolean rossover-box for a

vertex k-oloring problem (k � 2) is a planar gadget G with four distinguished

verties x, y, x

0

, y

0

, embedded lokwise in this order along the boundary of the

outer-fae of G, so that, given a two-olors palette P

2

� P

k

: (1) for any loal

state C, we have C(x) = C(x

0

) and C(y) = C(y

0

) and C(x); C(y) 2 P

2

, (2) for

11



any two olors C

x

, C

y

2 P

2

there exists a loal state C suh that C(x) = C

x

and C(y) = C

y

.

It turns out that the Boolean rossover-box will be parsimoniously imple-

mented by using essentially four one-way olor onverters: two dark ones and

two light ones.

4 The redution from PLAN-1/3-SAT to PLAN-3-COL

We now address the details of our redutions and the implementation of our

gadgets. We �rst design the gadget that will propagate the palette referene

between the gadgets sharing the same fae as explained in the sketh.

Exlusive rossover-box and pair-dupliator Reall from Fig. 4 that

when propagating the palette referene, the propagation of the gray olor

rosses the propagation of the blak olor. However, We do not need a real

rossover-box here, beause we know that the two olors to propagate are

di�erent. This introdues the de�nition of a new objet, namely the exlusive

rossover-box:

De�nition 24 (Exlusive Crossover-Box) An exlusive rossover-box for

a vertex k-oloring problem is a planar gagdet G with four distinguished ver-

ties x, y, x

0

, y

0

, embedded in this lokwise order along the boundary of the

outer-fae of G, so that: (1) for any loal state C, C(a

0

) = C(a) 6= C(b

0

) =

C(b), and (2) for any two olors C

a

, C

b

2 P

k

suh that C

a

6= C

b

there exists

a loal state C suh that C(a) = C

a

and C(b) = C

b

.

local statesimplementation

x x’

x

y’

y

y

y’

x’

representation configurations

Fig. 11. Exlusive rossover-box

An exlusive rossover-box is trivially implemented by the diamond depited in

Fig. 11. The reader an easily hek that it exatly allows the six on�gurations

drawn, and one on�guration orresponds to one loal state, i.e., that the

12



gadget is parsimonious. In further �gures, the exlusive rossover-box will be

symbolized by ). Chaining several exlusive rossover-boxes on a path or a

yle as shown in Fig. 12 will allow us to dupliate a (b; g) pair into as many

opies as we need, and thus will allow us to propagate the palette referene

along the inner boundary of a fae. Suh a yle is alled a pair-dupliator and

will be symbolized by in further �gures).

bg

b

b g

b

g b

b g

b

b g

g b

b

b g

g b

g g g g

implementationrepresentation one of the configurations associated local state

...

...

...

...

...

...

...

...

Fig. 12. Pair-dupliator

We now address the implementation of olor-onverters. As a �rst step, the

onverters will neither be one-way nor propagate the palette referene from

setor to setor. Indeed, eah olor of the palette will lie in a di�erent setor.

This will be orreted as a seond step.

The two-way olor-onverter. This gadget is depited in Fig. 13. It has

four distinguished verties x; b; x

0

; g embedded lokwise in this order, where

b and g are supposed to hold the two distint olors of the palette referene,

that is resp. blak and gray if we want a dark onverter, or resp. white and

gray if we want a light one, as explained in the sketh. The gadget is parsi-

monious and its on�gurations are all the 3-olorings C where C(x) and C(x

0

)

are equivalent olors with respet to the palette referene. More preisely, if,

say, C(b) = blak and C(g) = gray, the reader an easily hek that all the

possible on�gurations (C(x); C(x

0

)) are exatly the (white; white) on�gura-

tion and the four (dark; dark) on�gurations, i.e.: (blak; blak), (gray; gray),

(gray; blak) and (blak; gray). This onverter is said two-way, beause C(x

0

)

does not determine C(x) in a (dark; dark) on�guration, and onversely. In

further �gures, it is represented with the notation.

We now use the two-way olor-onverter to implement a one-way olor-onverter

that will furthermore propagate the palette referene through the line (x; x

0

).

The one-way olor-onverter. This gadget is depited in Fig. 14. It has

two distinguished verties x; x

0

plus two pairs (b; g) lying in eah of the two

setors de�ned by the line (x; x

0

). Note how the palette referene is propagated:

13
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i

possible local states and configurations

b

b

g

b

g

g

b

g g

b

g

b

( and

Fig. 13. Two-way (dark) olor-onverter

W.l.g. assume that the square verties b and g lying beneath the line (x; x

0

)

hold resp. blak and gray; Then the three exlusive rossover-boxes reopy

blak { resp. gray { in all other round verties b { resp. g. All the pairs (b; g)

now hold the olors making both two-way olors onverters behave as dark

olor-onverters. The reader an then easily hek that the gadget is parsimo-

nious and its on�gurations are all the 3-olorings C suh that C(x) 6= C(g)

and C(x) is equivalent to C(x

0

) with respet to the palette referene. More

preisely, with C(b) = blak and C(g) = gray, the four possible on�gurations

(C(x); C(x

0

)) are (white; white), (blak; gray), and (blak; blak).

In further �gures, this gadget will be represented by the notation.

gggb b b

b g b g b g

g b

bg

g b

g b

kji kji kji

g b g b bg

bg

bg

implementation

representation one (white, white) configuration

one (white, white) local state

two (black, dark) configurations

two (black, dark) local states

is either or

x’

x’

x

xx’x

x

x’x

x x’x’

Fig. 14. One-way olor-onverter

The 1/3-lause simulator. This gadget is depited in Fig. 15. It has three

distinguished verties x; y; z embedded lokwise in this order plus three pairs

(b; g), eah lying in one the three setors de�ned by the verties x, y, z. W.l.g.,

assume that one of the three pairs (b; g) is olored (blak; gray), e.g., the one

lying in the bottom setor. Then, these olors are propagated to all the other

pairs (b; g) through the pair-dupliators and the one-way olor-onverters.

Therefore, these latter behave as dark olor-onverters. It is not diÆult to

hek that there are only three ways to olor the triangle (i; j; k), eah one

oloring either i, j or k in white and the two other verties of the triangle in

dark. The three dark one-way olor-onverters ensure that the gray vertex of
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the triangle will be onverted into blak (the onverter onneting i to x is

useless beause i is never gray but is left for the sake of uniformity). Thus, the

only on�gurations are the three 3-olorings C suh that (C(x); C(y); C(z))

is (blak; white; blak) or (blak; blak; white) or (white; blak; blak), i.e., the

gadget parsimoniously simulates a planar 1/3-lause (x; y; z) with the iden-

ti�ation white = true and blak = false. In further �gures, the 1/3-lause

simulator will be represented by the notation.
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implementation

configurations

local states

1/3−clause simulator

Fig. 15. 1/3-lause simulator

The redution itself and its proof. We address the redution from PLAN-

1/3-SAT to PLAN-3-COL. Let '(V; C) be a PLAN-1/3-SAT instane and

G(V [ C;E) be a planar formula-graph assoiated to ' along with an arbi-

trary planar embedding (we suppose G is onneted for the sake of simpliity).

We reate a 3-COL instane G

0

from G that preserves the planarity of G and

with the same number of solutions:

(1) For eah variable-vertex v 2 V , reate a vertex x

v

.

(2) For eah lause-vertex  2 C with (; i), (; j), (; k) 2 E, reate a 1/3-

lause simulator s



with distinguished verties x = x

i

, y = x

j

and z = x

k

.

If i, j, k are in lokwise order around  for the hosen embedding, then

x, y and z should be also in lokwise order around s



.

(3) There are now a total of j3Cj pairs (b; g) among the distinguished verties

of the 1/3-lause simulators. We now want all the simulators to share the

same palette referene: Let F

0

be the set of faes of G

0

orresponding to

the set of faes F of G for the hosen embedding. For eah fae f 2 F

0

reate a pair-dupliator embedded in f by haining all the pairs (b; g)

lying in f (see Fig. 16).

(To redue 1/3-SAT to 3-COL, replae the seond step by a simple fusion of

the j3Cj seondary distinguished verties b { resp. verties g { onneted to

the 1/3-lause simulators into a single vertex b { resp. g.)
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Fig. 16. Redution from PLAN-1/3-SAT to PLAN-3-COL

The onstrution is a parsimonious redution from PLAN-1/3-SAT to PLAN-

3-COL: Let (b

0

; g

0

) be an arbitrary pair among the pairs (b; g) onneted to

one of the 1/3-lause simulators in the graph G

0

. Sine b

0

and g

0

share a

ommon pair-dupliator, we neessarily have C(b

0

) 6= C(g

0

) for any 3-oloring

C. Counting the non-isomorphi 3-olorings C is equivalent to ounting the

ones that verify C(b

0

) = blak and C(g

0

) = gray. Sine the input graph G is

onneted, so is G

0

, and (blak; gray) propagates to all the pairs (b; g) via the

pair-dupliators inside eah fae and via the 1/3-lause simulators aross the

faes. By the parsimonious behavior of the 1/3-lause simulator in presene of

a (blak; gray) referene palette, all the verties x

i

, x

j

, x

k

sharing a 1/3-lause

simulator must be either white or blak and exatly one must be white. Thus,

there is a bijetion between the set of assignments I satisfying ' and the set

of 3-olorings C suh that C(g

0

) = gray and C(b

0

) = blak, i.e. a set of non-

isomorphi 3-olorings, with the orrespondene I(v) = true () C(x

v

) =

white and I(v) = false () C(x

v

) = blak. �

5 The redution from 3-COL to PLAN-3-COL

We �rst address the implementation of the prism that will be used to build

our parsimonious rossover-box as explained in the sketh. This will be the

�rst time that we will need a olor-onverter behaving as a light one. Also, we

will need the prism in two symmetri embeddings.

The prism. This gadget is depited in Fig. 17. It has three primary distin-

guished verties x; low(x); high(x) embedded in this lokwise order around

the gadget, plus three pairs of verties (b; g), eah lying in one of the three se-

tors of the gadget. Let C be a satisfying 3-oloring for the prism and assume

w.l.g. that an arbitrary pair among the pairs (b; g) holds (blak; gray), e.g., the

pair of square verties lying in the bottom setor. This referene palette propa-

gates as usual exept for the Eastern olor-onverter: This is (white; gray) that
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is propagated instead by this gadget to the Eastern pair (w; g), hene making it

behave as a light olor-onverter as opposed to the Western dark onverter. It

follows that: C(x) = blak implies (C(high(x)); C(low(x))) = (blak; blak),

C(x) = gray implies (C(high(x)); C(low(x))) = (blak; white), C(x) = white

implies (C(high(x)); C(low(x))) = (white; white), and the gadget is parsimo-

nious. The prism will be represented by the notation in further �gures.

A \mirrored" prism where low(x) follows high(x) for the lokwise order is

similarly designed and will be represented by the notation.

w ww

x

b g

x

b g

x

b g

g

b

Prism( )= (

g

b

Prism( )= (

g

b
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bwg g w b g w b
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b g
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w
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g g gb b bg b

g

b

High(x) Low(x)

x

g

b

High(x) Low(x)

x

g

b

High(x) Low(x)

x

g

b

High(x) Low(x)

x

the three local states

g g gb b bg b

implementation

representation the three configurations

Fig. 17. Prism (here, high(x) follows low(x) for the lokwise order)

Combining an exlusive rossover-box with two dark olor-onverters and two

light olor-onverters now gives us the Boolean rossover-box needed to ross

eah other the binary omponents of two olors deomposed by the prism.

Conneted to a pair (b; g) holding (blak; gray) for a 3-oloring C, the Boolean

rossover-box is able to ross any two (distint or non distint) non-gray olors.

The Boolean rossover-box. A parsimonious implementation of a Boolean

rossover-box with palette P

2

= fwhite; blakg is depited in Fig. 18, It has

four primary distinguished verties x, y, x

0

, y

0

embedded lokwise in this

order, plus four pairs (b; g), eah one lying in one of the four setors of the

gadget. Let C be a satisfying 3-oloring and assume, w.l.g, that one of the

pairs (b; g) holds (blak; gray), e.g., the two square verties. The gadget is

parsimonious and its behavior mathes Def. 23) In further �gures, it will be

represented by the notation.

We have now all the neessary tools to parsimoniously implement our unre-

strited rossover-box rossing any two olors (distint or not) among three:
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Fig. 18. Boolean rossover-box

The unrestrited rossover-box. This gadget is depited in Fig. 19, It

has four distinguished verties x, y, x, y

0

embedded lokwise in this order plus

four pairs (b; g), eah one lying in one of the four setors of the gadget. Let C be

a 3-oloring of the gadget, and assume w.l.g., that one of the pairs (b; g) holds

(blak; gray), e.g. the pair of square verties. This referene-palette is propa-

gated as usual through the exlusive rossover-boxes, the pair-dupliators and

the prisms, so that all round pairs (b; g) also hold (blak; gray): Thus, prisms

deompose olors into blak and white and the four entral Boolean rossover-

boxes ross binary (blak/white) olors. Note that the two prisms onneted

to x and y

0

have the mirrored embedding so that their high and low slots

fae the respetive ones of the non-mirrored prisms onneted to x

0

and

y. Thus the prism onneted to x

0

{ resp. y { orretly reomposes the olors

deomposed by the prism attahed to x { resp. y

0

{ and propagated through

the two Boolean rossover-boxes lying in-between. If follows that for a given

referene palette, the built gadget has exatly the 9 expeted on�gurations

depited on the left of Fig. 19, eah one orresponding to one loal state. In

further �gures, the unrestrited rossover-box will be represented by the

notation.

The redution itself Let G(V = fv

1

; � � � ; v

n

g; E) be a non-planar graph.

We want to ompute in P-time a planar graph G

0

(V

0

; E

0

) with the same num-

ber of 3-olorings. Let M be the lower-left half adjaeny matrix of G. M

has

n(n�1)

2

entries M

i;j

, 1 � j < i � n, with M

i;j

= 1 i� (v

i

; v

j

) 2 E. The

embedding of G

0

will follow the physial grid T of M drawn in the plane (see

Fig. 20):
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Inside eah square T

i;j

of an entry M

i;j

, reate an unrestrited rossover-box

B

i;j

, with one primary distinguished vertex embedded on eah side of the

square. Two rossover-boxes sharing the ommon side of two squares also

share the distinguished vertex lying on this side. Also, any two rossover-

boxes B

i+1;i

and B

i;i�1

, 1 < i < n, share resp. their Northern and Eastern

distinguished verties.

This ensures that the distinguished verties in the row x

k

agree with the ones

on the line y

k

, so that they are all representants of the vertex v

k

. Therefore,

for eah edge e = (v

i

; v

j

) 2 E; i > j, one an reate an edge (u; v) in G

0

to

simulate e without breaking planarity with u and v being resp. the Eastern

and Southern distinguished verties of the rossover-box B

i;j

, sine u and v

are representants of resp. v

i

and v

j

.

We now want that those rossover-boxes share the same palette-referene: For

any three rossover-boxes B

i;j

, B

i+1;j

, B

i;j+1

, onnet the North-Eastern pair

(b; g) of B

i;j

, the South-Eastern one of B

i+1;j

, and the South-Western one of

B

i;j+1

with a ommon pair-dupliator.

Now, for a given palette-referene, say (gray; blak), there are obviously ex-

atly as many 3-olorings in G

0

as in G. But there are six possible palette-

referenes and we may hoose one independently of the simulated 3-oloring,

i.e. the 3-oloring of the primary distinguished verties. So, G

0

has six times

the required number of solutions. We remove these unwanted dupliates by

making the palette referene dependent of the simulated 3-oloring: Choose

an arbitrary edge (v

i

; v

j

) 2 E (this is (v

4

; v

3

) in Fig. 20), and let B

x

= B

n;j

and B

y

= B

i;1

. Merge the Southern distinguished vertex of B

x

with the vertex

g of its South-Eastern pair (b; g), and merge the Western distinguished vertex
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of B

y

with the vertex b of its North-Western pair (b; g) (these are resp. i = 4

and j = 3 in Fig. 20). There are now exatly as many solution in G

0

and in G.

1

2

3

4

5

6

1 2 3 4 5 6

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

��������������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

its half adjacency matrix

0

0

0

0

0

0

v1

v3 v5v2

v4 v6

the non planar graph K(3,3)

1

2

3

4

5

6

1 2 3 4 5 6

a planar graph with the same number of solutions

1

11

1

1

1

1

1

1

Fig. 20. Parsimonious redution from 3-COL to PLAN-3-COL

6 Conlusion

In this paper, we have proved that 3-COL and PLAN-3-COL are parsimo-

niously equivalent to the problem SAT, and hene, also apture aurately

the struture of the solutions of any problem in NP. This also yields new DP-

ompleteness results under random P-time redutions for 3-COL and PLAN-

3-COL.

Finally, it is interesting to note that our parsimonious redutions, from 1/3-

SAT (or SAT) to 3-COL on one hand, and from PLAN-1/3-SAT (or PLAN-

SAT) to PLAN-3-COL on the other hand, are omputed in linear time on

RAMs, so they form a sequel to the results of [6,3,8,1,2℄ on linear redutions.
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A Proofs of the behaviors of the gadgets

Proof of the behavior of the two-way olor-onverter. Let C be a

3-oloring for the two-way olor onverter and assume w.l.g. that the square

verties b and g hold resp. blak and gray (see Fig. 13). Then by the properties

of the exlusive rossover-box, the round verties b and g also hold resp. blak

and gray, furthermore C(i) = C(j) 6= blak, and C(i

0

) = C(j

0

) 6= gray. There

are now two ases:

� Suppose C(i) = C(j) = gray (leftmost ase in Fig. 13). Then, C(k) = white

and C(i

0

) = C(j

0

) = blak, and it follows that C(x) = C(x

0

) = white.

� Suppose C(i) = C(j) = white, (rightmost ase in Fig. 13). Then C(k) =

gray, C(k

0

) = blak, C(i

0

) = C(j

0

) = white, and it follows that C(x) = dark

and C(x

0

) = dark, i.e., x and x

0

an be blak or gray, independently of eah

other. �

Proof of the behavior of the one-way olor-onverter. Let C be a 3-

oloring for the one-way olor-onverter, and assume w.l.g that one of the pairs

(b; g) holds (blak; gray), e.g., the pair of square verties (see Fig. 14). Then,

by the properties of the exlusive rossover-box, all other round pairs (b; g)

also hold (blak; gray) and furthermore C(j) = C(k) 6= blak and C(x) =

C(i) 6= gray. Thus, both two-way olor-onverters behave as dark-onverters.

There are now two ases:

� Suppose C(x) = white (leftmost ase in Fig. 14). Then C(x

0

) = C(k) =

C(j) = white, by the properties of the exlusive rossover-box and the

two-way dark-onverter.

� Suppose C(x) = blak (rightmost ase in Fig. 14). Then C(i) = blak,

C(j) = C(k) = gray, and �nally C(x

0

) = dark by the property of the

two-way dark-onverter, i.e., x

0

an be either blak or gray. �

Proof of the behavior of the PLAN-1/3-SAT lause simulator. Let C

be a 3-oloring for the lause simulator, and assume w.l.g that one of the pairs

(b; g) holds (blak; gray), e.g., the pair of square verties (see Fig. 15). These

olors propagate through the exlusive rossover-boxes, the pair-dupliators

and the one-way olor-onverters, and �nally C(g) = gray and C(b) = blak,

for all round pairs (b; g). Thus, all the one-way onverters behave as dark-

onverters and one of those pairs oeres C(i) 6= gray and C(k) 6= blak.

There are now three ases, depending on the olor of j:
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� Suppose C(j) = white (leftmost ase in Fig. 15), then C(i) = blak,

C(k) = gray, and �nally C(x) = blak, C(y) = white, C(z) = blak,

by the property of the one-way dark-onverter.

� Suppose C(j) = blak (entral ase in Fig. 15), then C(i) = white, C(k) =

gray, and �nally C(x) = white, C(y) = blak, C(z) = blak, by the prop-

erty of the one-way dark-onverter.

� Suppose C(j) = gray (rightmost ase in Fig. 15), then C(k) = white,

C(i) = blak, and �nally C(x) = blak, C(y) = blak, and C(z) = white,

by the property of the one-way dark-onverter. �

Proof of the behavior of the prism. Let C be a 3-oloring for the prism,

and assume w.l.g. that one of the pairs (b; g) holds (blak; gray), e.g., the pairs

of square verties (see Fig. 17). Then, these olors �rst propagate in the entral

part of the gadget through the exlusive rossover-box and the pair-dupliator.

It also propagates through the Western one-way olor-onverter. The entral

vertex w is then white sine it shares a triangle with a pair (b; g). Thus, the

Eastern one-way olor-onverter is onneted to a pair holding (white; gray),

and these olors are propagated through the onverter to the Eastern pair

(w; g). Thus, the Eastern vertex b sharing a triangle with this pair (w; g) is

blak, and �nally, (blak; gray) has been propagated to all round pairs (b; g).

Also notie that the Western olor-onverter behaves as dark onverter while

the Eastern one behaves as a light onverter. Both olor-onverters are one-

way and hene high(x) and low(x) annot be gray. There are now three ases

depending on C(x):

� Suppose C(x) = blak (leftmost ase in Fig. 17). Then the dark onverter

outputs C(high(x)) = blak, and the light onverter outputs C(low(x)) =

blak.

� Suppose C(x) = gray (entral ase in Fig. 17). Then the dark onverter

outputs C(high(x)) = blak, and the light onverter outputs C(low(x)) =

white.

� Suppose C(x) = white (rightmost ase in Fig. 17). Then the dark-onverter

outputs C(high(x)) = white, and the light onverter outputs C(low(x)) =

white. �

Proof of the behavior of the Boolean rossover-box. Let C be a 3-

oloring for the Boolean rossover-box and assume w.l.g, that one of the

pairs (b; g) holds (blak; gray), e.g., the pairs of square verties (see Fig. 18).

The palette-referene is propagated to all pairs (b; g) via exlusive rossover-

boxes, pair-dupliators, and one-way olor-onverters. Moreover, for all ver-

ties named w, C(w) = white sine they share a triangle with b and g.

Note that both olor-onverters on the vertial line (y; y

0

) behave as light-

onverters while both olor-onverters on the horizontal line (x; x

0

) behave as
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dark-onverters. The four olor-onverters are one-way, and hene x, y, x

0

, y

0

annot be gray. Also, i and i

0

annot be white beause they are adjaent to

w. Now, there are two main ases depending on C(x):

� Suppose C(x) = white (leftmost ases in Fig. 18). Then the leftmost light-

onverter outputs C(i) = gray, the exlusive rossover-box outputs C(i

0

) =

gray, and the rightmost light-onverter outputs C(x

0

) = white. There are

two subases depending on C(y):

� Suppose C(y) = white (upper leftmost ase in Fig. 18). Then the upper

dark-onverter outputs C(j) = white, the exlusive rossover-box outputs

C(j

0

) = white, and the lower dark-onverter outputs C(y

0

) = white.

� Suppose C(y) = blak (lower leftmost ase in Fig. 18). Then the upper

dark-onverter outputs C(j) = blak (gray is exluded by the exlusive

rossover-box). The exlusive rossover-box outputs C(j

0

) = gray, and

the lower dark-onverter outputs C(y

0

) = blak.

� Suppose C(x) = blak (rightmost ases in Fig. 18). Then the leftmost light-

onverter outputs C(i) = blak, the exlusive rossover-box outputs C(i

0

) =

blak, and the rightmost light-onverter outputs C(x

0

) = blak. There are

two subases depending on C(y):

� Suppose C(y) = white (upper rightmost ase in Fig. 18). Then the upper

dark-onverter outputs C(j) = white, the exlusive rossover-box outputs

C(j

0

) = white, and the lower dark-onverter outputs C(y

0

) = white.

� Suppose C(y) = blak (lower rightmost ase in Fig. 18). Then the upper

dark-onverter outputs C(j) = gray (blak is exluded by the exlusive

rossover-box). The exlusive rossover-box outputs C(j

0

) = gray, and

the lower dark-onverter outputs C(y

0

) = blak. �

Proof of the behavior of the unrestrited rossoverbox. Let C be a

3-oloring for the unrestrited rossover-box, and assume w.l.g. that one of

the pairs (b; g) holds (blak; gray), e.g. the pair of square verties. Observe

that blak and gray are resp. propagated to all round verties b and g via

the exlusive rossover-boxes, pair-dupliators, prisms and Boolean rossover-

boxes. C(x) is deomposed by the leftmost (mirrored) prism into C(l

x

) =

C(low(x)) and C(h

x

) = C(high(x)). Then C(l

x

) is propagated to l

00

x

and l

0

x

through the two lower Boolean rossover-boxes, and similarly C(h

x

) is prop-

agated to h

00

x

and h

0

x

through the two upper Boolean rossover-boxes. But

l

0

x

= low(x

0

) and h

0

x

= high(x

0

), the deomposition of C(x

0

) via the rightmost

(non-mirrored) prism, and therefore C(x) = C(x

0

). Similarly, C(low(y)) =

C(l

y

) = C(l

0

y

) = C(l

00

y

) = C(low(y

00

)) and C(high(y)) = C(h

y

) = C(h

0

y

) =

C(h

00

y

) = C(high(y

00

)) and �nally C(y) = C(y

0

). We onlude that the gadget

has nine possible loal states resp. orresponding to the nine on�gurations of

Fig. 19. �
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B The equivalene of (PLAN-)SAT and (PLAN-)1/3-SAT

In this appendix we briey reall why (PLAN-)SAT and (PLAN-)1/3-SAT are

parsimoniously reduible eah other.

Reduing (PLAN-)1/3-SAT to (PLAN-)SAT is trivial sine any 1/3-lause

(x; y; z) an be parsimoniously simulated with three 2-lauses and one 3-lause:

:x _:y, :y _:z, :z _ :x and x_ y _ z. Moreover the planarity is preserved

sine to any 3-star of any simulated 1/3-lause orresponds the 3-star of its

fourth simulating lause embedded in the hexagon formed by its �rst three

simulating lauses.

In order to redue (PLAN-)SAT to (PLAN-)1/3-SAT we build gadgets to

simulate Boolean operators. Figure B.1 shows the gadget NOR-EQV (with

variable verties as rounds and 1/3-lause verties as squares): This gadget,

whih four distinguished verties x, e, y, n embedded in this lokwise order, is

a \two in one"-gadget that simulates both the negated-or operator (NOR) and

the equivalene operator (EQV). More preisely, x and y are the input verties

of the operator, e and n are the output verties, and in any interpretation (1)

e = EQV (x; y), i.e. e, (x, y), and (2) n = NOR(x; y), i.e., n, :(x _ y).

x y x y x yx y x yn n nn n

eqv
nor

e

ji

e e e

j j ji i i i j

e

eqv
nor

eqv
nor

eqv
nor

eqv
nor

the four configurations

the four local statesimplementation

representation

x

n

e

y x

n

e

y x

n

e

y x

n

e

y x

n

e

y

Fig. B.1. The NOR-EQV operator

Indeed, there are two ases:

� At least one of the three values i, j and n is true (three �rst loal states in

Fig. B.1). The gadget is symmetri, so w.l.g. let n be true (�rst loal state

in Fig. B.1). Then x and i { resp. y and j { are fored to be false beause

of the 1/3-lause (x; i; n) { resp. the 1/3-lause (y; j; n). Now, both i and j

being false, it follows that e must be true beause of the 1/3-lause (e; i; j).

The two entral loal states are rotations of this �rst loal state.

� All of the values i, j and n are false (last loal state in Fig.B.1). Then the

1/3-lauses (x; i; n), (y; j; n) and (e; i; j) resp. oere that x, y and e be all

true.

25



The set of on�gurations is summed-up by the following-truth table:

x y n e

false false true true

true false false false

false true false false

true true false true

One an hek that all true/false ombinations for x and y are possible,

so n and e an be seen as funtions of x and y with n = NOR(x; y) and

e = EQV (x; y) as stated above.

Though the NOR operator is omplete for propositional logi, we design two

other operators in 1/3-SAT for more onveniene. The NOT operator is shown

on the left of Fig. B.2: it has two distinguished verties x and n and parsimo-

niously oeres that n, :x.

i

j

k

i

j

k

i

j

k

i

k k

i

nx x n x n t tf f

x n t fF

not − representation

not − implementation

not − the two configurations

not − the two local states

x n x n t fF

const − implementation

const − representation

const − the local state

const − the configuration

not Tnot not T

Fig. B.2. The NOT operator and the CONST operator

There are two ases:

� Suppose j is false. Then, either i or k is true by the 1/3-lause (i; j; k).

The gadget being symmetri, assume w.l.g. that i is true and k is false. By

the 1/3-lause (x; i; n), it follows that both x and n are false, and �nally k

must be true by the 1/3-lause (x; k; n). A ontradition.

� So, j is always true, and i and k are always false. And both 1/3-lauses

(x; i; n) and (y; j; n) oeres that exatly one of x and n is true, i.e. n, :x.

Note that sine j is always true, merging the verties x and j of the gadget

NOT eliminates the on�guration where x is false. This way, one obtains the

gadget CONST shown on the right of Fig. B.2. This gadget has two distin-

guished verties t and f and only one on�guration, with t being the onstant

true and f the onstant false.

The operator OR is built by haining the gadget NOR with the gadget NOT,

and a lause of arbitrary length is built by haining several OR operators

as in Fig. B.3, the terminal output vertex of the hain being onneted to
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a gadget CONST, oering the lause to be satis�ed. The onstrution is

obviously parsimonious and also preserves the embedding of the simulated

lause, so the simulation of all the lauses of any (planar) input SAT instane

will yield a (planar) 1/3-SAT instane with as many solutions. This ompletes

the redution from (PLAN-)SAT to (PLAN)-1/3-SAT.

eqv
nor

eqv
nor

eqv
nor

w x y z

w x y z

f TF

not not

not not

Fig. B.3. Simulation of the lause (w _ :x _ :y _ z) with PLAN-1/3-SAT
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C The equivalene of 1/3-SAT and PLAN-1/3-SAT

In this setion, we give diret arguments to show that 1/3-SAT and PLAN-1/3-

SAT are parsimoniously reduible eah other: The redution from PLAN-1/3-

SAT to 1/3-SAT is the identity, and �nding the onverse redution boils down

to �nding a parsimonious rossover-box. An implementation of this gagdet is

obtained by onneting four gadgets NOR-EQV (as de�ned in the previous

setion) in the way of Fig. C.1. This gadget has four distinguished verties x,

y, x

0

and x

0

embedded in this lokwise order. This gadget parsimoniously o-

eres any two distinguished verties lying in opposite orners to be equivalent

independently of the assignment of the other two distinguished verties.
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implementation
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Fig. C.1. Crossover-box for PLAN-1/3-SAT

Note that the entral vertex is onneted to the EQV slot of all the gadgets

NOR-EQV. So, there are two ases:

� The entral vertex is true: Then the verties x, x

0

, y, y

0

are all equivalent,

i.e., either all false or all true. This yields the two leftmost on�gurations

(false; false; false; false) and (true; true; true; true) on Fig. C.1.

� The entral vertex is false: Then x is not equivalent to y whih itself

is not equivalent to x

0

. So x and x

0

turn out to be equivalent. Similarly

y and y

0

are equivalent, and this yields the two rightmost on�gurations

(false; true; false; true) and (true; false; true; false) on Fig. C.1.

Therefore, the gadget is a parsimonious rossover-box for PLAN-1/3-SAT, and

an be used in the usual way to redue parsimoniously 1/3-SAT to PLAN-

1/3-SAT in quadrati time.
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D The redution of (PLAN-)3-COL to (PLAN-)1/3-SAT

It is easy to redue 3-COL to 1/3-SAT. The onstraint that any vertex of

the input graph is olored with exatly one olor among three is onveniently

simulated with 1/3-lauses: For eah vertex x in the input graph, reate three

variables w(x), g(x) and b(x) { meaning that x is resp. olored white, gray

and blak { and reate a 1/3-lause (w(x); g(x); b(x)). Now for a given olor 

and a given edge (x; y), we want that exatly one of the three exlusive ases

holds:

� x has the olor ,

� y has the olor ,

� neither x nor y have the olor ,

so the onstraint that any two adjaent verties have distint olors is ex-

pressed by three 1/3-lauses per edges: For eah edge (x; y) of the input

graph, reate the verties w(x; y), g(x; y) and b(x; y) { meaning that neither

x nor y are olored resp. white, gray and blak { and reate the 1/3-lauses

(w(x); w(x; y); w(y)), (g(x); g(x; y); g(y)) and (b(x); b(x; y); b(y)). See Fig. D.1

This nearly ends the parsimonious redution from 3-COL to 1/3-SAT: we must

remove the isomorphi solutions of the 3-COL instane. This is done by hoos-

ing an arbitrary edge (u; v) of the input graph and by foring the 3-oloring

of u and v to, say resp. white and blak, whih is simulated by onneting

w(u) and b(v) to the distinguished vertex t of a gadget CONST, as de�ned in

Appendix B.1.

w(x) g(x) b(x)

b(y)g(y)w(y)

w(x) b(x)g(x)

w(y) g(y) b(y)
w(x) g(x) b(x)

g(x,y) b(x,y)w(x,y)

x

y

g(x,y) b(x,y)w(x,y)

its simulation

x

y

a 3−COL instance
a vertex in simulation of the vertex

with a 1/3−clause

x

an edge in
a 3−COL instance

simulation of the edge
with 1/3−clauses

a 3−coloring
along an edge

Fig. D.1. Redution from 3-COL to 1/3-SAT

The planarity is not preserved beause of the explosion of eah vertex into

three variables, whih makes the 1/3-lauses simulating distint edges inident

to x overlap. In order to redue PLAN-3-COL to PLAN-1/3-SAT, one also

reates three variables per vertex x { namely w(x), g(x), b(x) { onneted by

a 1/3-lause (w(x); g(x); b(x)), but we also dupliate them as many times as

the degree d(x) of vertex x into new variables w

i

(x), g

i

(x), b

i

(x), 1 � i � d(n),

the i

th

3-uple being denoted slot

i

(x) as a whole. The dupliation is done by

haining the parsimonious rossover-box for PLAN-1/3-SAT (see Appendix

C) as in Fig. D.2. Note that the lokwise order for slot

i

(x) is b

i

(x), g

i

(x) and

then b

i

(x).
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slot 1 (x) slot 2 (x) slot 3 (x)

w1(x) g1(x) b1(x) w2(x) g2(x) b2(x) w3(x) g3(x) b3(x)

w(x)

b(x)

g(x)

Fig. D.2. Dupliation of olor slots

Now, eah edge (x; y) of the input graph an be assoiated with a pair of slots

(slot

i

(x); slot

j

(y)) with respet to the hosen embedding: For eah suh edge,

we reate the three verties w(x; y); g(x; y); b(x; y). However, one annot di-

retly reate the three 1/3-lauses (w

i

(x); w(x; y); w

j

(y)), (g

i

(x); g(x; y); g

j

(y))

and (b

i

(x); b(x; y); b

j

(y)), to simulate the edge (x; y) beause both slots slot

i

(x)

and slot

j

(y) have the same lokwise order for b; g; w and they fae eah

other. So, one of the two slots, say slot

i

(x) must be \twisted" to reorder

b

i

(x); g

i

(x); w

i

(x) in ounterlokwise order. This is done by using three rossover-

boxes as in Fig. D.3, where b

0

i

(x); g

0

i

(x); w

0

i

(x) are now in ounterlokwise or-

der. We an now reate the 1/3-lauses (w

0

i

(x); w(x; y); w

j

(y)), (g

0

i

(x); g(x; y); g

j

(y))

and (b

0

i

(x); b(x; y); b

j

(y)), to simulate any edge (x; y). Finally, hoosing an ar-

bitrary edge (u; v) of the input graph and onneting w(u) and b(u) to the

distinguished vertex t of a gadget CONST ends the parsimonious redution

from PLAN-3-COL to PLAN-1/3-SAT.

g(x)

w(x)

b(x)

w’(x)

g’(x)

b’(x)

g’’(x)

w’’(x) b’’(x)

Fig. D.3. Reversal of the lokwise order of the olor slots
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