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Abstra
t

We prove that the Satis�ability (resp. Planar Satis�ability) problem is parsimo-

niously P-time redu
ible to the 3-Colorability (resp. Planar 3-Colorability) prob-

lem, that means that the exa
t number of solutions is preserved by the redu
tion,

provided that 3-
olorings are 
ounted modulo their six trivial 
olor permutations.

In parti
ular, the uniqueness of solutions is preserved, whi
h implies that Unique

3-Colorability is exa
tly as hard as Unique Satis�ability in the general 
ase as well

as in the planar 
ase. A 
onsequen
e of our result is the DP-
ompleteness of Unique

3-Colorability and Unique Planar 3-Colorability under random P-time redu
tions.

It also gives a �ner and uni�ed proof of the #P-
ompleteness of #3-Colorability

that was �rst obtained by Linial for the general 
ase, and later by Hunt et al. for

the planar 
ase. Previous authors' redu
tions were either weakly parsimonious with

a multipli
ation of the numbers of solutions by an exponential fa
tor, or involved

#P-
omplete intermediate 
ounting problems derived from trivial \yes"-de
ision

problems.

1 Introdu
tion

Parsimonious redu
tions { i.e., P-time redu
tions that preserve the exa
t num-

ber of solutions of the input problem { are interesting for at least two reasons:

(1) Su
h redu
tions generally preserve the stru
ture of the solutions, sin
e they

realize in pra
ti
e a bije
tive 
orresponden
e between the sets of solutions that

is P-time 
omputable [4℄, and (2) Su
h redu
tions not only allow to prove #P-


ompleteness results for 
ounting problems [15℄ but also DP-
ompleteness re-

sults for de
ision problems asking about the existen
e of unique solutions [16℄.

Many P-time redu
tions between NP-
omplete problems are indeed parsimo-

nious. In parti
ular, it is signi�
ant to note that the generi
 redu
tion that
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proves the NP-hardness of the Satis�ability problem (SAT) is easily made par-

simonious, whi
h means that SAT a

urately 
aptures the stru
ture of any NP

problem.

This is not true for all NP-
omplete problems however, to begin with the ones

whose sets of solutions display intrinsi
 symmetries, e.g. graph 3-Colorability

1

(3-COL). Typi
ally, ea
h solution of any instan
e of 3-COL indu
es six solu-

tions that are isomorphi
 under 
olor permutations. Therefore, the number

of 3-
olorings of any instan
e of 3-COL is trivially a multiple of six. Another

example is the problem 
alled Not-All-Equal-In-3-Positive-Sat (NAE-3-SAT),

whi
h asks whether a given 
onjun
tion of positive 3-
lauses has an assignment

for whi
h ea
h 3-
lause 
ontains at least one true literal and one false literal.

Ea
h solution of NAE-3-SAT indu
es two solutions that are isomorphi
 under

bitwise negation, so the number of solutions of every instan
e of NAE-3-SAT

is trivially even. Of 
ourse, no su
h symmetry happens for SAT, and for any

�xed integer k, it is easy to build SAT instan
es with exa
tly k solutions. As

an obvious 
onsequen
e, no parsimonious transformation 
an exist from SAT

to 3-COL (or to NAE-3-SAT).

However, one 
an naturally regard a group of isomorphi
 solutions as only

one solution, and 
ount the solutions a

ordingly. With this new 
ounting


onvention, the argument does not hold anymore and one 
an naturally asks

whether parsimonious P-time transformations exist from SAT to 3-COL (resp.

to NAE-3-SAT). Also, it now makes sense to ask if a given 3-COL or a NAE-3-

SAT instan
e has a unique solution (problems U-3-COL and U-NAE-3-SAT),

and exhibiting the redu
tions above would imply that U-3-COL (resp. NAE-

3-SAT) is as hard as de
iding if a SAT instan
e has a unique satisfying as-

signment (problem U-SAT).

From now on, we shall always 
onsider any group of isomorphi
 solutions as

only one solution: Interestingly, it is already known that a parsimonious redu
-

tion from NAE-3-SAT to SAT does exist under our 
ounting 
onvention, sin
e

Creignou and Hermann [5℄ parsimoniously redu
ed 1-Exa
tly-In-Positive-3-

Sat (1/3-SAT) to NAE-3-SAT. The link to SAT itself is done via the following

result, whose proof 
an be found in [9℄ or alternatively in Appendix B of this

paper:

Proposition 1 1/3-SAT and SAT are parsimoniously redu
ible ea
h other.

However, we are not aware of a similar result for the more interesting prob-

lem 3-COL. Indeed, the 
lassi
al redu
tions from SAT to 3-COL, e.g., the

one presented by Kozen [11℄, are not even weakly parsimonious, i.e., they

do not even establish any pre
ise relation between the number of solutions

of the instan
es, be
ause the 3-
olorings are dupli
ated without any 
ontrol.

1

Terms in itali
s are formally de�ned in Se
tion 2.
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However, a weakly parsimonious redu
tion from SAT to 3-COL 
an be ob-

tained by 
omposing three transformations: the parsimonious redu
tion from

SAT to 1/3-SAT, Creignou and Hermann's parsimonious redu
tion from 1/3-

SAT to NAE-3-SAT [5℄, and Dewdney's weakly parsimonious redu
tion from

NAE-3-SAT to 3-COL [6℄. While this weak parsimony together with the #P-


ompleteness of #SAT is suÆ
ient to imply the #P-
ompleteness of #3-COL

2

it gives no 
lue about the expressiveness of U-3-COL 
ompared to the one of

U-SAT, be
ause Dewdney's redu
tion multiplies the solutions by an exponen-

tial fa
tor.

The same questions 
an naturally be addressed for the planar versions of those

problems. Note that:

Proposition 2 PLAN-1/3-SAT and PLAN-SAT are parsimoniously redu
ible

ea
h other,

sin
e the transformations between SAT and 1/3-SAT preserve the planarity

of the graphs. Also, it is well known that:

Proposition 3 Planar Satis�ability (PLAN-SAT) and SAT are parsimoniously

redu
ible ea
h other.

This was established by Li
htenstein by using a well-known parsimonious


rossover-box eliminating the potential edge 
rossings [12,9℄. Alternatively,

one 
an take advantage of the parsimonious equivalen
e of SAT and 1/3-

SAT on one hand, and of PLAN-SAT and PLAN-1/3-SAT on the other hand,

to establish this equivalen
e by a parsimonious redu
tion from 1/3-SAT to

PLAN-1/3-SAT whi
h is presented in Appendix C for the sake of 
omplete-

ness.

As far as PLAN-NAE-3-SAT and PLAN-3-COL are 
on
erned, the former is

a trivial \Yes"-problem, as an easy 
onsequen
e of the Four-Colors Theorem

in planar graphs, whereas 3-COL remains NP-
omplete in the plane. The


lassi
al redu
tion from 3-COL to PLAN-3-COL eliminates the edge 
rossings

by using a well-known non-parsimonious 
rossover-box [14,11,7℄. Hunt et al.

modi�ed this 
rossover-box in [10℄ to make it weakly parsimonious and hen
e

proved the #P-
ompleteness of #PLAN-3-COL via a weakly parsimonious

redu
tion from 3-COL to PLAN-3-COL, with a multipli
ation of the number

of solutions by an exponential of the square of the size of the input.

2

#3-COL was earlier shown to be #P-
omplete by Linial [13℄, but not from the

#P-
ompleteness of #SAT. This was done under a parsimonious P-time transfor-

mation from the #P-
omplete problem #STABLE in bipartite graphs to #3-COL

in bipartite graphs, that are 
ounting problems whose asso
iate de
ision problems

are both trivial \Yes"-problems.
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Thus, to our knowledge and even with our natural 
ounting 
onvention, no

parsimonious redu
tions are known till now neither from 3-COL to PLAN-3-

COL nor from SAT to 3-COL, let alone from PLAN-SAT to PLAN-3-COL. In

parti
ular, the hardness of U-3-COL and U-PLAN-3-COL are open problems.

In this paper, we show that su
h redu
tions do exist:

Proposition 4 3-COL is parsimoniously redu
ible to PLAN-3-COL in quadrati


time, and in parti
ular U-3-COL is so redu
ible to U-PLAN-3-COL.

Proposition 5 SAT is parsimoniously redu
ible to 3-COL in linear time, and

in parti
ular U-SAT is so redu
ible to U-3-COL.

Proposition 6 PLAN-SAT redu
es parsimoniously to PLAN-3-COL in lin-

ear time, and in parti
ular U-PLAN-SAT is so redu
ible to U-PLAN-3-COL.

PLAN−NAE−SAT

PLAN−3−COLPLAN−SAT

PLAN−1/3−SAT

1/3−SAT

NAE−SAT

SAT 3−COL

General Case

Planar Case

("yes"−problem)

parsimonious

weakly parsimonious

(with exponential factor of duplication)

Parsimonious reductions in this paper:

non−trivial, presented in the body

Reductions in the literature:

easier, presented in the Appendices

Fig. 1. Redu
tions towards 3-COL and parsimony

Figure 1 sums up the 
ontributions of this paper. Sin
e the easier 
onverse

linear redu
tions from (PLAN-)3-COL to (PLAN-)1/3-SAT also exist, that

implies in parti
ular that U-3-COL and U-SAT (resp. U-PLAN-3-COL and

U-PLAN-SAT) have exa
tly the same time 
omplexity up to a 
onstant mul-

tipli
ative fa
tor. Furthermore, the delays between the output of two 
onse
u-

tive solutions during an enumeration of all the solutions are preserved up to a

multipli
ative 
onstant. As far as polynomial time 
omplexity 
lasses are 
on-


erned, this gives �ner and uni�ed proofs of the #P-
ompleteness of #3-COL

and #PLAN-3-COL. Also, sin
e U-SAT and U-PLAN-SAT are both known

to be 
omplete problems in the 
lass DP under random P-time redu
tions [9℄,

we 
on
lude that:

Corollary 7 3-COL, PLAN-3-COL, SAT and PLAN-SAT are equivalent un-

der parsimonious redu
tions, and hen
e U-3-COL and U-PLAN-3-COL are

DP-
omplete under random P-time redu
tions.

The paper is organized as follows: Se
tion 2 presents all the de�nitions of

te
hni
al terms used in the paper. A number of tools will have to be designed

to rea
h our goal. Se
tion 3 sket
hes their high level behavior and explains

how we expe
t them to intera
t in the big pi
ture. To show the parsimonious

equivalen
e of (PLAN-)SAT and (PLAN-)3-COL, we take advantage of the

4



parsimonious equivalen
e of SAT, PLAN-SAT, 1/3-SAT and PLAN-1/3-SAT

and we only have to parsimoniously redu
e (PLAN-)3-COL to (PLAN-)1/3-

SAT. Se
tion 4 is devoted to the details of this redu
tion and to the imple-

mentation of most of the tools sket
hed in Se
tion 3. The 
omplete proofs of

the behaviors of those gadgets are presented in Appendix A. The 
onverse

redu
tion from (PLAN-)3-COL to (PLAN-)1/3-SAT is shown in Appendix D.

Finally, we show in Se
tion 5 that we 
an derive a parsimonious 
rossover-box

for PLAN-1/3-COL from our tools, hen
e improving the weakly parsimonious


rossover-box of [10℄. This gives a dire
t parsimonious redu
tion from 3-COL

to PLAN-3-COL (i.e., without using 1/3-SAT and PLAN-1/3-SAT as inter-

mediate problems).

2 Preliminaries and De�nitions

We now re
all the studied satis�ability/
olorability problems, the involved


omplexity 
lasses, and the te
hni
al tools and 
on
epts used in the whole

paper.

De�nition 8 (Problem SAT) Input: a CNF formula '(V; C) with a list

of 
lauses C over the set of variables V . Question: does V admit a truth-

assignment su
h that at least one literal per 
lause in C is assigned true?

De�nition 9 (Problem NAE-3-SAT) Input: a CNF formula '(V; C) of

positive 3-
lauses (i.e. 
lauses of length 3 with no negative literals) over the

set of variables V . Question: does V admit a truth-assignment su
h that ea
h


lause in C 
ontains at least one true variable and one false variable, i.e.,

su
h that not all variables are equal in any 
lause?

De�nition 10 (Problem 1/3-SAT) Input: a CNF formula '(V; C) of pos-

itive 3-
lauses (i.e. 
lauses of length 3 with no negative literals) over the set

of variables V . Question: does V admit a truth-assignment su
h that exa
tly

one variable per 
lause in C is assigned true?

De�nition 11 (Formula-Graph and Planar Formula) The formula-graph

G(') of a CNF formula '(V; C) where C is a list of 
lauses over the set of vari-

ables V , is de�ned as the bipartite graph G(V

0

[C

0

; E), with V

0

= fx

v

; v 2 V g

and C

0

= fx




; 
 2 Cg and E = f(x

v

; x




); 
 2 C; v 2 
g. If G is planar, then '

is 
alled a planar formula.

We now see the SAT-like problems above as vertex 2-
oloring problems of the

Formula-graphs of their inputs, with the two 
olors true and false.
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De�nition 12 (Vertex k-Coloring) A vertex k-
oloring of a graph G(V;E)

is a fun
tion C : V �! P

k

(where the k-palette P

k

is a set of k 
olors).

De�nition 13 (Problem 3-COL) Input: a graph G(V;E). Question: Does

a 3-
oloring of the verti
es C : V �! P

3

where P

3

= fwhite; gray; bla
kg

exist so that for all (x; y) 2 E, C(x) 6= C(y)?

De�nition 14 (Isomorphi
 Colorings) Let G(V;E) be a graph, and C

1

,

C

2

be two vertex 
olorings of G with the palette P

k

= f1; � � � ; kg. C

1

and C

2

are isomorphi
 if there exists a 
olor permutation � : P

k

�! P

k

su
h that for

all x 2 V , C

1

(x) = �(C

2

(x)).

3-COL and NAE-SAT are examples of vertex 
oloring problems with trivial


olor isomorphisms. We now de�ne the planar versions, 
ounting versions and

\unique" versions of the de
ision problems 
ited above:

De�nition 15 (Problem PLAN-�) For any problem � on graphs, its pla-

nar version PLAN-� is de�ned as the restri
tion of � to planar inputs.

De�nition 16 (Problems #� and U-� asso
iated to a problem �) For

any de
ision problem � on input I, the 
ounting version #� is the problem

asking the number of distin
t solutions of I for �, and its \unique" version

U-� is the problem asking whether I has a unique solution for �. For the


oloring problems 
ited above, a solution is a vertex 
oloring (in parti
ular,

a truth assignment for SAT-like problems). For problems whose sets of solu-

tions have trivial symmetries (e.g. 3-COL and NAE-3-SAT), two isomorphi



olorings are 
ounted as one 
oloring.

De�nition 17 (
lass DP) A property belongs to the 
lass DP if it is the


onjun
tion of an NP property and a 
o-NP property.

In parti
ular, U-SAT and U-3-COL belong to DP sin
e they ask on one hand

whether at least one solution exists, and on the other hand whether no two

solutions exist.

De�nition 18 (Parsimonious and Weakly Parsimonious Redu
tions)

A P-time redu
tion R from problem �

1

to problem �

2

is weakly parsimonious

if, for ea
h instan
e I

1

2 �

1

, its number of solutions #I

1

for problem �

1

is equal to f

R

(I

1

) � #I

2

, where I

2

= R(I

1

), #I

2

is the number of solutions

of I

2

for �

2

, and f

R

is a P-time 
omputable fun
tion. R is parsimonious i�

#I

1

= #I

2

(i.e., f

R

(I

1

) = 1).

Our parsimonious redu
tions will use the following notions:

De�nition 19 (Gadget and Distinguished Verti
es) A gadget is a 
on-

ne
ted graph G(V;E) used to build a supergraph G

0

(V

0

� V;E

0

� E). The

6



distinguished verti
es x

1

; � � � ; x

p

of G are the only verti
es v 2 V that are

allowed to be adja
ent to verti
es in V

0

� V . If G

0

is planar, then G must be

planar itself, and x

1

; � � � ; x

p

must all lie on the boundary of the outer fa
e of

G in a spe
i�ed 
lo
kwise order.

De�nition 20 (Lo
al States and Con�gurations) Let G be a gadget with

distinguished verti
es x

1

; � � � ; x

p

and � be a vertex k-
oloring problem. A lo
al

state of G is a satisfying k-
oloring of G, and a 
on�guration is the restri
-

tion of a lo
al state to x

1

; � � � ; x

p

. Noti
e that one 
on�guration may generally

expand into several distin
t lo
al states.

De�nition 21 (Parsimonious and Weakly Parsimonious Gadget) Let

G be a gadget and � be a vertex k-
oloring problem. G is a weakly parsimo-

nious gadget if there exists a 
onstant s 6= 0 su
h that ea
h satisfying 
on�g-

uration C of G for � expands to exa
tly s distin
t lo
al states. The gadget is

parsimonious i� s = 1, i.e., if there is a one-to-one 
orresponden
e between

its 
on�gurations and its lo
al states.

3 Sket
h of the redu
tions and their main tools

Our redu
tions from (PLAN)-1/3-SAT to (PLAN)-3-COL and from 3-COL to

PLAN-3-COL are rather tri
ky and involve sophisti
ated gadgets. Therefore,

we �rst present a simpli�ed high-level view of the behaviors of our main gad-

gets and of the whole redu
tions. Fortunately the prin
iples of the 
onstru
tion

are modular and rather simple.

3.1 From PLAN-1/3-SAT to PLAN-3-COL

We want to design a planarity-preserving and parsimonious P-time redu
tion

R from 1/3-SAT to 3-COL with the palette P

3

= fwhite; gray; bla
kg. In the

rest of this paper, bla
k and gray are both 
alled dark 
olors. Similarly, white

and gray are both 
alled light 
olors.

The main task is to design a 3-COL gadget to simulate a 1/3-SAT 
lause, i.e.,

a positive 
lause of length three that 
onstrains exa
tly one of its variables to

be assigned true. Ea
h of the three variables of the 
lause will be represented

by one vertex. However, we must �nd a 
orresponden
e between Booleans (2-

states obje
ts) and 
olors (3-states obje
ts). We 
hoose that dark 
olors (i.e.,

bla
k and gray) represent false, and white represents true. Furthermore, for the

sake of parsimony, the false should always be represented by bla
k in the \user

7



interfa
e", i.e., in the distinguished verti
es of the 1/3-SAT 
lause simulator,

whereas gray may appear in the \implementation side" of the gadget.

converter
dark one−waydark one−way dark one−way

converter converter
yx y x yx

Fig. 2. Mapping Boolean values to 
olors by substitutability of dark 
olors

So, we need an obje
t su
h as in Fig. 2 that implements this feature of sub-

stitutability between dark 
olors with respe
t to the false value. This gadget,


alled dark one-way 
olor-
onverter binds two distinguished verti
es x and y,

with x being on the \interfa
e side" (i.e., x 
annot be gray), and y being on the

\implementation side" (i.e., y may be gray). For any satisfying 3-
oloring C,

this 
onverter 
oer
es C(x) and C(y) to represent equivalent Boolean values,

i.e., the gadget must exa
tly allow the 
on�gurations (C(x); C(y)) that are

either (bla
k; bla
k) or (bla
k; gray) or (white; white).

A parsimonious implementation of the dark one-way 
olor-
onverter will give

us the high-level s
heme to implement parsimoniously the 1/3-SAT 
lause

simulator in the way of Fig. 3. The reader 
an easily 
he
k that exa
tly one

of the verti
es x, y and z must be white and that the two other verti
es must

be bla
k.

"x is true, y and z are false" "y is true, x and z are false" "z is true, x and y are false"

forbid
gray

black
forbid

forbid
gray

black
forbid

forbid
gray

black
forbid

y

z

x

y

z

x

y

z

x
dark one−way

converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

dark one−way
converter

Fig. 3. Simulating a 1/3-SAT 
lause

The fa
t that 
olors play asymmetri
al rôles (there are two dark 
olors to

represent the false and only one white 
olor to represent the true) requires

that the implementations of all the gadgets must use this palette 
onvention.

It means that we will have to 
onne
t ea
h gadget to two se
ondary distin-

guished verti
es b and g holding resp. the bla
k and the gray representations

of the false and lying in the se
tor formed by two 
onse
utive primary distin-

guished verti
es. The additional requirement that planarity be preserved will


ompli
ate the design of our gadgets sin
e they will play an additional rôle

beside their primary behaviors: Ea
h gadget should propagate the referen
e

palette { i.e., the 
olors held in the pair (b; g) { to all the other se
tors of the

gadget (into verti
es also named b and g for simpli
ity), as shown in Fig. 3.

This way, gadgets lying in the vi
inity of another gadget 
an use its referen
e

palette if needed and propagate it further themselves. as shown in Fig. 4. In

order that all the gadgets follow the same 
onvention, we de
ide that in ea
h

se
tor of a gadget, g will follow b for the 
lo
kwise order around the gadget.

8



g

bg

b

bg g b

the palette reference should propapagate
to all gadgets sharing the same faceto all sectors of the  gadget

black box

gadget’s gadget’s

black box

additional distinguished vertices
holding the palette reference

primary distinguished vertices the palette reference should propagate

Fig. 4. Propagating the palette referen
e through and between gadgets

Interestingly, the need of a 
onne
tion to a palette referen
e allows to 
reate

gadgets with new behaviors at no 
ost just by 
hanging the 
ontent of the

palette. This is parti
ularly true for 
olor 
onversion. Normally, a dark 
olor


onverter is always 
onne
ted to a pair (b; g) holding the dark palette referen
e

(bla
k; gray). However, if we de
ide to store the light 
olors (white; gray) in-

stead, then we obtain a new gadget, the light one-way 
olor-
onverter, allowing

a substitutability between light 
olors as depi
ted in Fig. 5 (to be 
ompared

to Fig. 2). This behavior will be used in the next redu
tion.

converter converter converter
yx y x yx

light one−way light one−way light one−way

Fig. 5. Substitutability of light 
olors

3.2 From 3-COL to PLAN-3-COL

Finding a parsimonious redu
tion 3-COL to PLAN-3-COL essentially 
onsists

in exhibiting a parsimonious 
rossover-box to resolve edge 
rossings as depi
ted

in Fig. 6: A 
rossing between edges (x; u) and (y; v) is resolved by repla
ing

the two edges by a 
rossover with distinguished verti
es x, y, x

0

and y

0

and by


reating two edges (x

0

; u) and (y

0

; v). The behavior of a 
rossover-box 
an be

de�ned as follows:

De�nition 22 (Crossover-Box) A 
rossover-box for a vertex k-
oloring prob-

lem is a planar gadget G with four distinguished verti
es x, y, x

0

, y

0

, embedded


lo
kwise in this order along the boundary of the outer-fa
e of G, so that:

(1) for any lo
al state C, C(x) = C(x

0

) and C(y) = C(y

0

), and (2) for any

two 
olors C

x

; C

y

2 P

k

(possibly equal), there exists a lo
al state C so that

C(x) = C

x

and C(y) = C

y

.

Crossover-boxes for 3-COL that exist in the literature are weakly parsimonious

at best: The standard 
rossover-box one �nds in the 
omplexity books [14,11,7℄

is not parsimonious as shown in Fig. 7: Ea
h 
on�guration 
oloring x and y

9



removal of the crossing

y’y’

x’

x x’

y

v

x

y

x u u

edge crossing

y

v

crossover−box

Fig. 6. Resolving edge 
rossings with 
rossover-boxes

with the same 
olor expands into two lo
al states whereas ea
h 
on�guration


oloring x and y with distin
t 
olors expands into one lo
al state.

y

x’

y’

x

y’

y

x’

y

x’

y’

x

y

y’

x’xx’

y’

y

x

two possible  local states

x

one local statebicolored configurationmonocolored configuration

Fig. 7. Standard non-parsimonious 
rossover-box for PLAN-3-COL

This 
rossover-box was improved by Hunt et al. to make it weakly parsimo-

nious [10℄: As shown in Fig. 8, ea
h 
on�guration expands into two lo
al states,

whether it 
olors x and y with the same 
olors or not. This implies that redu
-

ing a 3-COL instan
e with n verti
es and 
 edge 
rossings to a PLAN-3-COL

instan
e by using 
 
rossover-boxes will multiply the number of solutions by

2




where 
 may be as large as �(n

2

).

monocolored configuration bicolored configuration

y

y’

x x’ x

y

y’

x’

y

x’

y’

x

y

x’

y’

x

two possible local states
is either or

x

y

y’

x’

two possible local states

Fig. 8. Hunt et al. 's weakly parsimonious 
rossover-box for PLAN-3-COL

A parsimonious 
rossover-box for PLAN-3-COL is hard to 
onstru
t dire
tly,

so we will not propagate the 
olors C(x) rightwards and C(y) downwards

dire
tly. Instead, we will pro
eed in three steps as shown in Fig.10:

First, using a gadget 
alled the prism, we de
ompose the 
olors C(x) { resp.

C(y) { into two pure 
olors, stored in verti
es low(x) and high(x) { resp.

low(y) and high(y). Our two pure 
olors are bla
k and white. Therefore:

� Gray is seen as a 
omposition of bla
k and white,

� White de
omposes into white and white,

10



� Bla
k de
omposes into bla
k and bla
k.

co
n
v
er

te
r

li
g
h
t 

o
n
e−

w
ay

dark one−way
converter

co
n
v
er

te
r

li
g
h
t 

o
n
e−

w
ay

dark one−way
converter

co
n
v
er

te
r

li
g
h
t 

o
n
e−

w
ay

dark one−way
converter

x

low(x)

high(x)

x

low(x)

high(x)

x

low(x)

high(x)

Fig. 9. Implementing a prism with one-way 
olor 
onverters

By interpreting a bla
k/white vertex as a bit set on/o�, the a
tion of the prism

on vertex x 
an be seen as the writing in binary of its 
olor C(x) as the 
ouple

(C(high(x)); C(low(x))). As Fig. 9 shows, a prism is a simple appli
ation of

the dark one-way 
olor-
onverter to obtain low(x) and the light one-way 
olor


onverter to obtain high(x).

y’

y

x x’

instead of three

into two pure  binary colors

Boolean crossover boxes
have to deal with only two colors

high(y)

high(x)

low(x)

low(y)

low(x’)

high(x’)

high(y’) low(y’)

the prism decomposes a color

Fig. 10. Implementing a parsimonious 
rossover-box using prisms

Se
ondly, high(x) and low(x) { resp high(y) and low(y) { are the 
olors we

will propagate rightwards { resp. downwards { to re
ompose them as a third

step into C(x

0

) { resp. C(y

0

) { by using the prism again. These verti
al and

horizontal propagations will generate four edge 
rossings instead of the one we

tried to resolve initially, but sin
e the propagated information is now Boolean

(one 
olor, gray, has temporarily vanished), we expe
t that a parsimonious

resolution of the edge 
rossings will be easier, by introdu
ing a new obje
t:

the Boolean 
rossover-box.

De�nition 23 (Boolean Crossover-Box) A Boolean 
rossover-box for a

vertex k-
oloring problem (k � 2) is a planar gadget G with four distinguished

verti
es x, y, x

0

, y

0

, embedded 
lo
kwise in this order along the boundary of the

outer-fa
e of G, so that, given a two-
olors palette P

2

� P

k

: (1) for any lo
al

state C, we have C(x) = C(x

0

) and C(y) = C(y

0

) and C(x); C(y) 2 P

2

, (2) for

11



any two 
olors C

x

, C

y

2 P

2

there exists a lo
al state C su
h that C(x) = C

x

and C(y) = C

y

.

It turns out that the Boolean 
rossover-box will be parsimoniously imple-

mented by using essentially four one-way 
olor 
onverters: two dark ones and

two light ones.

4 The redu
tion from PLAN-1/3-SAT to PLAN-3-COL

We now address the details of our redu
tions and the implementation of our

gadgets. We �rst design the gadget that will propagate the palette referen
e

between the gadgets sharing the same fa
e as explained in the sket
h.

Ex
lusive 
rossover-box and pair-dupli
ator Re
all from Fig. 4 that

when propagating the palette referen
e, the propagation of the gray 
olor


rosses the propagation of the bla
k 
olor. However, We do not need a real


rossover-box here, be
ause we know that the two 
olors to propagate are

di�erent. This introdu
es the de�nition of a new obje
t, namely the ex
lusive


rossover-box:

De�nition 24 (Ex
lusive Crossover-Box) An ex
lusive 
rossover-box for

a vertex k-
oloring problem is a planar gagdet G with four distinguished ver-

ti
es x, y, x

0

, y

0

, embedded in this 
lo
kwise order along the boundary of the

outer-fa
e of G, so that: (1) for any lo
al state C, C(a

0

) = C(a) 6= C(b

0

) =

C(b), and (2) for any two 
olors C

a

, C

b

2 P

k

su
h that C

a

6= C

b

there exists

a lo
al state C su
h that C(a) = C

a

and C(b) = C

b

.

local statesimplementation

x x’

x

y’

y

y

y’

x’

representation configurations

Fig. 11. Ex
lusive 
rossover-box

An ex
lusive 
rossover-box is trivially implemented by the diamond depi
ted in

Fig. 11. The reader 
an easily 
he
k that it exa
tly allows the six 
on�gurations

drawn, and one 
on�guration 
orresponds to one lo
al state, i.e., that the

12



gadget is parsimonious. In further �gures, the ex
lusive 
rossover-box will be

symbolized by ). Chaining several ex
lusive 
rossover-boxes on a path or a


y
le as shown in Fig. 12 will allow us to dupli
ate a (b; g) pair into as many


opies as we need, and thus will allow us to propagate the palette referen
e

along the inner boundary of a fa
e. Su
h a 
y
le is 
alled a pair-dupli
ator and

will be symbolized by in further �gures).

bg

b

b g

b

g b

b g

b

b g

g b

b

b g

g b

g g g g

implementationrepresentation one of the configurations associated local state

...

...

...

...

...

...

...

...

Fig. 12. Pair-dupli
ator

We now address the implementation of 
olor-
onverters. As a �rst step, the


onverters will neither be one-way nor propagate the palette referen
e from

se
tor to se
tor. Indeed, ea
h 
olor of the palette will lie in a di�erent se
tor.

This will be 
orre
ted as a se
ond step.

The two-way 
olor-
onverter. This gadget is depi
ted in Fig. 13. It has

four distinguished verti
es x; b; x

0

; g embedded 
lo
kwise in this order, where

b and g are supposed to hold the two distin
t 
olors of the palette referen
e,

that is resp. bla
k and gray if we want a dark 
onverter, or resp. white and

gray if we want a light one, as explained in the sket
h. The gadget is parsi-

monious and its 
on�gurations are all the 3-
olorings C where C(x) and C(x

0

)

are equivalent 
olors with respe
t to the palette referen
e. More pre
isely, if,

say, C(b) = bla
k and C(g) = gray, the reader 
an easily 
he
k that all the

possible 
on�gurations (C(x); C(x

0

)) are exa
tly the (white; white) 
on�gura-

tion and the four (dark; dark) 
on�gurations, i.e.: (bla
k; bla
k), (gray; gray),

(gray; bla
k) and (bla
k; gray). This 
onverter is said two-way, be
ause C(x

0

)

does not determine C(x) in a (dark; dark) 
on�guration, and 
onversely. In

further �gures, it is represented with the notation.

We now use the two-way 
olor-
onverter to implement a one-way 
olor-
onverter

that will furthermore propagate the palette referen
e through the line (x; x

0

).

The one-way 
olor-
onverter. This gadget is depi
ted in Fig. 14. It has

two distinguished verti
es x; x

0

plus two pairs (b; g) lying in ea
h of the two

se
tors de�ned by the line (x; x

0

). Note how the palette referen
e is propagated:

13



implementationrepresentation

one (white, white) local state four (dark, dark) local states

x

x’ x’

x x

x’

x

x’

x

x’

x

x’

are fixed )
is either or

g

b

k

k’j’

j

i’

i

for one (white, white) configuration

g

b

k

k’j’

j

i’

i

for the four (dark, dark) configurations

g

b

k

k’j’

j

i’

i

possible local states and configurations

b

b

g

b

g

g

b

g g

b

g

b

( and

Fig. 13. Two-way (dark) 
olor-
onverter

W.l.g. assume that the square verti
es b and g lying beneath the line (x; x

0

)

hold resp. bla
k and gray; Then the three ex
lusive 
rossover-boxes re
opy

bla
k { resp. gray { in all other round verti
es b { resp. g. All the pairs (b; g)

now hold the 
olors making both two-way 
olors 
onverters behave as dark


olor-
onverters. The reader 
an then easily 
he
k that the gadget is parsimo-

nious and its 
on�gurations are all the 3-
olorings C su
h that C(x) 6= C(g)

and C(x) is equivalent to C(x

0

) with respe
t to the palette referen
e. More

pre
isely, with C(b) = bla
k and C(g) = gray, the four possible 
on�gurations

(C(x); C(x

0

)) are (white; white), (bla
k; gray), and (bla
k; bla
k).

In further �gures, this gadget will be represented by the notation.

gggb b b

b g b g b g

g b

bg

g b

g b

kji kji kji

g b g b bg

bg

bg

implementation

representation one (white, white) configuration

one (white, white) local state

two (black, dark) configurations

two (black, dark) local states

is either or

x’

x’

x

xx’x

x

x’x

x x’x’

Fig. 14. One-way 
olor-
onverter

The 1/3-
lause simulator. This gadget is depi
ted in Fig. 15. It has three

distinguished verti
es x; y; z embedded 
lo
kwise in this order plus three pairs

(b; g), ea
h lying in one the three se
tors de�ned by the verti
es x, y, z. W.l.g.,

assume that one of the three pairs (b; g) is 
olored (bla
k; gray), e.g., the one

lying in the bottom se
tor. Then, these 
olors are propagated to all the other

pairs (b; g) through the pair-dupli
ators and the one-way 
olor-
onverters.

Therefore, these latter behave as dark 
olor-
onverters. It is not diÆ
ult to


he
k that there are only three ways to 
olor the triangle (i; j; k), ea
h one


oloring either i, j or k in white and the two other verti
es of the triangle in

dark. The three dark one-way 
olor-
onverters ensure that the gray vertex of
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the triangle will be 
onverted into bla
k (the 
onverter 
onne
ting i to x is

useless be
ause i is never gray but is left for the sake of uniformity). Thus, the

only 
on�gurations are the three 3-
olorings C su
h that (C(x); C(y); C(z))

is (bla
k; white; bla
k) or (bla
k; bla
k; white) or (white; bla
k; bla
k), i.e., the

gadget parsimoniously simulates a planar 1/3-
lause (x; y; z) with the iden-

ti�
ation white = true and bla
k = false. In further �gures, the 1/3-
lause

simulator will be represented by the notation.

g b

g b

g b

g bg b

g bg b

g b

k k k

b

g

k

b
g

b
g

ggg b

g bb

b

g b

b
g

g
b

g
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g

gb

g b

g
b g

b

i

j

i

j j

i

j

i

z

z

z

z

z

z

z

z

y

x

y

x x

y y

x

x

y

x

y

x

y y

x

implementation

configurations

local states

1/3−clause simulator

Fig. 15. 1/3-
lause simulator

The redu
tion itself and its proof. We address the redu
tion from PLAN-

1/3-SAT to PLAN-3-COL. Let '(V; C) be a PLAN-1/3-SAT instan
e and

G(V [ C;E) be a planar formula-graph asso
iated to ' along with an arbi-

trary planar embedding (we suppose G is 
onne
ted for the sake of simpli
ity).

We 
reate a 3-COL instan
e G

0

from G that preserves the planarity of G and

with the same number of solutions:

(1) For ea
h variable-vertex v 2 V , 
reate a vertex x

v

.

(2) For ea
h 
lause-vertex 
 2 C with (
; i), (
; j), (
; k) 2 E, 
reate a 1/3-


lause simulator s




with distinguished verti
es x = x

i

, y = x

j

and z = x

k

.

If i, j, k are in 
lo
kwise order around 
 for the 
hosen embedding, then

x, y and z should be also in 
lo
kwise order around s




.

(3) There are now a total of j3Cj pairs (b; g) among the distinguished verti
es

of the 1/3-
lause simulators. We now want all the simulators to share the

same palette referen
e: Let F

0

be the set of fa
es of G

0


orresponding to

the set of fa
es F of G for the 
hosen embedding. For ea
h fa
e f 2 F

0


reate a pair-dupli
ator embedded in f by 
haining all the pairs (b; g)

lying in f (see Fig. 16).

(To redu
e 1/3-SAT to 3-COL, repla
e the se
ond step by a simple fusion of

the j3Cj se
ondary distinguished verti
es b { resp. verti
es g { 
onne
ted to

the 1/3-
lause simulators into a single vertex b { resp. g.)
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implementation

...

......

...

... ...

v

u w

x

y

z

three 1/3−clauses C1, C2, C3 over variables u, v, w, x, y, z

u

v

w

x

y

z

C1

C2 C3

Fig. 16. Redu
tion from PLAN-1/3-SAT to PLAN-3-COL

The 
onstru
tion is a parsimonious redu
tion from PLAN-1/3-SAT to PLAN-

3-COL: Let (b

0

; g

0

) be an arbitrary pair among the pairs (b; g) 
onne
ted to

one of the 1/3-
lause simulators in the graph G

0

. Sin
e b

0

and g

0

share a


ommon pair-dupli
ator, we ne
essarily have C(b

0

) 6= C(g

0

) for any 3-
oloring

C. Counting the non-isomorphi
 3-
olorings C is equivalent to 
ounting the

ones that verify C(b

0

) = bla
k and C(g

0

) = gray. Sin
e the input graph G is


onne
ted, so is G

0

, and (bla
k; gray) propagates to all the pairs (b; g) via the

pair-dupli
ators inside ea
h fa
e and via the 1/3-
lause simulators a
ross the

fa
es. By the parsimonious behavior of the 1/3-
lause simulator in presen
e of

a (bla
k; gray) referen
e palette, all the verti
es x

i

, x

j

, x

k

sharing a 1/3-
lause

simulator must be either white or bla
k and exa
tly one must be white. Thus,

there is a bije
tion between the set of assignments I satisfying ' and the set

of 3-
olorings C su
h that C(g

0

) = gray and C(b

0

) = bla
k, i.e. a set of non-

isomorphi
 3-
olorings, with the 
orresponden
e I(v) = true () C(x

v

) =

white and I(v) = false () C(x

v

) = bla
k. �

5 The redu
tion from 3-COL to PLAN-3-COL

We �rst address the implementation of the prism that will be used to build

our parsimonious 
rossover-box as explained in the sket
h. This will be the

�rst time that we will need a 
olor-
onverter behaving as a light one. Also, we

will need the prism in two symmetri
 embeddings.

The prism. This gadget is depi
ted in Fig. 17. It has three primary distin-

guished verti
es x; low(x); high(x) embedded in this 
lo
kwise order around

the gadget, plus three pairs of verti
es (b; g), ea
h lying in one of the three se
-

tors of the gadget. Let C be a satisfying 3-
oloring for the prism and assume

w.l.g. that an arbitrary pair among the pairs (b; g) holds (bla
k; gray), e.g., the

pair of square verti
es lying in the bottom se
tor. This referen
e palette propa-

gates as usual ex
ept for the Eastern 
olor-
onverter: This is (white; gray) that
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is propagated instead by this gadget to the Eastern pair (w; g), hen
e making it

behave as a light 
olor-
onverter as opposed to the Western dark 
onverter. It

follows that: C(x) = bla
k implies (C(high(x)); C(low(x))) = (bla
k; bla
k),

C(x) = gray implies (C(high(x)); C(low(x))) = (bla
k; white), C(x) = white

implies (C(high(x)); C(low(x))) = (white; white), and the gadget is parsimo-

nious. The prism will be represented by the notation in further �gures.

A \mirrored" prism where low(x) follows high(x) for the 
lo
kwise order is

similarly designed and will be represented by the notation.

w ww

x

b g

x

b g

x

b g

g

b

Prism( )= (

g

b

Prism( )= (

g

b

Prism( )= ()= Bin(0, 1)= 1 )= Bin(1, 1)= 3)= Bin(0, 0)= 0

bwg g w b g w b

x

b g

g

b

bwg

High(x)High(x)High(x)High(x) Low(x) Low(x) Low(x) Low(x)

w

Prism(x)= (High(x), Low(x))

g g gb b bg b

g

b

High(x) Low(x)

x

g

b

High(x) Low(x)

x

g

b

High(x) Low(x)

x

g

b

High(x) Low(x)

x

the three local states

g g gb b bg b

implementation

representation the three configurations

Fig. 17. Prism (here, high(x) follows low(x) for the 
lo
kwise order)

Combining an ex
lusive 
rossover-box with two dark 
olor-
onverters and two

light 
olor-
onverters now gives us the Boolean 
rossover-box needed to 
ross

ea
h other the binary 
omponents of two 
olors de
omposed by the prism.

Conne
ted to a pair (b; g) holding (bla
k; gray) for a 3-
oloring C, the Boolean


rossover-box is able to 
ross any two (distin
t or non distin
t) non-gray 
olors.

The Boolean 
rossover-box. A parsimonious implementation of a Boolean


rossover-box with palette P

2

= fwhite; bla
kg is depi
ted in Fig. 18, It has

four primary distinguished verti
es x, y, x

0

, y

0

embedded 
lo
kwise in this

order, plus four pairs (b; g), ea
h one lying in one of the four se
tors of the

gadget. Let C be a satisfying 3-
oloring and assume, w.l.g, that one of the

pairs (b; g) holds (bla
k; gray), e.g., the two square verti
es. The gadget is

parsimonious and its behavior mat
hes Def. 23) In further �gures, it will be

represented by the notation.

We have now all the ne
essary tools to parsimoniously implement our unre-

stri
ted 
rossover-box 
rossing any two 
olors (distin
t or not) among three:
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Fig. 18. Boolean 
rossover-box

The unrestri
ted 
rossover-box. This gadget is depi
ted in Fig. 19, It

has four distinguished verti
es x, y, x, y

0

embedded 
lo
kwise in this order plus

four pairs (b; g), ea
h one lying in one of the four se
tors of the gadget. Let C be

a 3-
oloring of the gadget, and assume w.l.g., that one of the pairs (b; g) holds

(bla
k; gray), e.g. the pair of square verti
es. This referen
e-palette is propa-

gated as usual through the ex
lusive 
rossover-boxes, the pair-dupli
ators and

the prisms, so that all round pairs (b; g) also hold (bla
k; gray): Thus, prisms

de
ompose 
olors into bla
k and white and the four 
entral Boolean 
rossover-

boxes 
ross binary (bla
k/white) 
olors. Note that the two prisms 
onne
ted

to x and y

0

have the mirrored embedding so that their high and low slots

fa
e the respe
tive ones of the non-mirrored prisms 
onne
ted to x

0

and

y. Thus the prism 
onne
ted to x

0

{ resp. y { 
orre
tly re
omposes the 
olors

de
omposed by the prism atta
hed to x { resp. y

0

{ and propagated through

the two Boolean 
rossover-boxes lying in-between. If follows that for a given

referen
e palette, the built gadget has exa
tly the 9 expe
ted 
on�gurations

depi
ted on the left of Fig. 19, ea
h one 
orresponding to one lo
al state. In

further �gures, the unrestri
ted 
rossover-box will be represented by the

notation.

The redu
tion itself Let G(V = fv

1

; � � � ; v

n

g; E) be a non-planar graph.

We want to 
ompute in P-time a planar graph G

0

(V

0

; E

0

) with the same num-

ber of 3-
olorings. Let M be the lower-left half adja
en
y matrix of G. M

has

n(n�1)

2

entries M

i;j

, 1 � j < i � n, with M

i;j

= 1 i� (v

i

; v

j

) 2 E. The

embedding of G

0

will follow the physi
al grid T of M drawn in the plane (see

Fig. 20):
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the nine configurations

representation implementation

x x’

y’

y

b
g

g

g
b

b

x x’

b

g

yg

b

g

b

y’

g
b

g

b

ly’’

ly’

ly

hy’

lx’

hx’hx’’

hy

hy’’

lx’’lx

hx

Fig. 19. Unrestri
ted 
rossover-box

Inside ea
h square T

i;j

of an entry M

i;j

, 
reate an unrestri
ted 
rossover-box

B

i;j

, with one primary distinguished vertex embedded on ea
h side of the

square. Two 
rossover-boxes sharing the 
ommon side of two squares also

share the distinguished vertex lying on this side. Also, any two 
rossover-

boxes B

i+1;i

and B

i;i�1

, 1 < i < n, share resp. their Northern and Eastern

distinguished verti
es.

This ensures that the distinguished verti
es in the row x

k

agree with the ones

on the line y

k

, so that they are all representants of the vertex v

k

. Therefore,

for ea
h edge e = (v

i

; v

j

) 2 E; i > j, one 
an 
reate an edge (u; v) in G

0

to

simulate e without breaking planarity with u and v being resp. the Eastern

and Southern distinguished verti
es of the 
rossover-box B

i;j

, sin
e u and v

are representants of resp. v

i

and v

j

.

We now want that those 
rossover-boxes share the same palette-referen
e: For

any three 
rossover-boxes B

i;j

, B

i+1;j

, B

i;j+1

, 
onne
t the North-Eastern pair

(b; g) of B

i;j

, the South-Eastern one of B

i+1;j

, and the South-Western one of

B

i;j+1

with a 
ommon pair-dupli
ator.

Now, for a given palette-referen
e, say (gray; bla
k), there are obviously ex-

a
tly as many 3-
olorings in G

0

as in G. But there are six possible palette-

referen
es and we may 
hoose one independently of the simulated 3-
oloring,

i.e. the 3-
oloring of the primary distinguished verti
es. So, G

0

has six times

the required number of solutions. We remove these unwanted dupli
ates by

making the palette referen
e dependent of the simulated 3-
oloring: Choose

an arbitrary edge (v

i

; v

j

) 2 E (this is (v

4

; v

3

) in Fig. 20), and let B

x

= B

n;j

and B

y

= B

i;1

. Merge the Southern distinguished vertex of B

x

with the vertex

g of its South-Eastern pair (b; g), and merge the Western distinguished vertex
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of B

y

with the vertex b of its North-Western pair (b; g) (these are resp. i = 4

and j = 3 in Fig. 20). There are now exa
tly as many solution in G

0

and in G.
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v1

v3 v5v2

v4 v6

the non planar graph K(3,3)

1

2

3

4

5

6

1 2 3 4 5 6

a planar graph with the same number of solutions

1

11

1

1

1

1

1

1

Fig. 20. Parsimonious redu
tion from 3-COL to PLAN-3-COL

6 Con
lusion

In this paper, we have proved that 3-COL and PLAN-3-COL are parsimo-

niously equivalent to the problem SAT, and hen
e, also 
apture a

urately

the stru
ture of the solutions of any problem in NP. This also yields new DP-


ompleteness results under random P-time redu
tions for 3-COL and PLAN-

3-COL.

Finally, it is interesting to note that our parsimonious redu
tions, from 1/3-

SAT (or SAT) to 3-COL on one hand, and from PLAN-1/3-SAT (or PLAN-

SAT) to PLAN-3-COL on the other hand, are 
omputed in linear time on

RAMs, so they form a sequel to the results of [6,3,8,1,2℄ on linear redu
tions.
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A Proofs of the behaviors of the gadgets

Proof of the behavior of the two-way 
olor-
onverter. Let C be a

3-
oloring for the two-way 
olor 
onverter and assume w.l.g. that the square

verti
es b and g hold resp. bla
k and gray (see Fig. 13). Then by the properties

of the ex
lusive 
rossover-box, the round verti
es b and g also hold resp. bla
k

and gray, furthermore C(i) = C(j) 6= bla
k, and C(i

0

) = C(j

0

) 6= gray. There

are now two 
ases:

� Suppose C(i) = C(j) = gray (leftmost 
ase in Fig. 13). Then, C(k) = white

and C(i

0

) = C(j

0

) = bla
k, and it follows that C(x) = C(x

0

) = white.

� Suppose C(i) = C(j) = white, (rightmost 
ase in Fig. 13). Then C(k) =

gray, C(k

0

) = bla
k, C(i

0

) = C(j

0

) = white, and it follows that C(x) = dark

and C(x

0

) = dark, i.e., x and x

0


an be bla
k or gray, independently of ea
h

other. �

Proof of the behavior of the one-way 
olor-
onverter. Let C be a 3-


oloring for the one-way 
olor-
onverter, and assume w.l.g that one of the pairs

(b; g) holds (bla
k; gray), e.g., the pair of square verti
es (see Fig. 14). Then,

by the properties of the ex
lusive 
rossover-box, all other round pairs (b; g)

also hold (bla
k; gray) and furthermore C(j) = C(k) 6= bla
k and C(x) =

C(i) 6= gray. Thus, both two-way 
olor-
onverters behave as dark-
onverters.

There are now two 
ases:

� Suppose C(x) = white (leftmost 
ase in Fig. 14). Then C(x

0

) = C(k) =

C(j) = white, by the properties of the ex
lusive 
rossover-box and the

two-way dark-
onverter.

� Suppose C(x) = bla
k (rightmost 
ase in Fig. 14). Then C(i) = bla
k,

C(j) = C(k) = gray, and �nally C(x

0

) = dark by the property of the

two-way dark-
onverter, i.e., x

0


an be either bla
k or gray. �

Proof of the behavior of the PLAN-1/3-SAT 
lause simulator. Let C

be a 3-
oloring for the 
lause simulator, and assume w.l.g that one of the pairs

(b; g) holds (bla
k; gray), e.g., the pair of square verti
es (see Fig. 15). These


olors propagate through the ex
lusive 
rossover-boxes, the pair-dupli
ators

and the one-way 
olor-
onverters, and �nally C(g) = gray and C(b) = bla
k,

for all round pairs (b; g). Thus, all the one-way 
onverters behave as dark-


onverters and one of those pairs 
oer
es C(i) 6= gray and C(k) 6= bla
k.

There are now three 
ases, depending on the 
olor of j:
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� Suppose C(j) = white (leftmost 
ase in Fig. 15), then C(i) = bla
k,

C(k) = gray, and �nally C(x) = bla
k, C(y) = white, C(z) = bla
k,

by the property of the one-way dark-
onverter.

� Suppose C(j) = bla
k (
entral 
ase in Fig. 15), then C(i) = white, C(k) =

gray, and �nally C(x) = white, C(y) = bla
k, C(z) = bla
k, by the prop-

erty of the one-way dark-
onverter.

� Suppose C(j) = gray (rightmost 
ase in Fig. 15), then C(k) = white,

C(i) = bla
k, and �nally C(x) = bla
k, C(y) = bla
k, and C(z) = white,

by the property of the one-way dark-
onverter. �

Proof of the behavior of the prism. Let C be a 3-
oloring for the prism,

and assume w.l.g. that one of the pairs (b; g) holds (bla
k; gray), e.g., the pairs

of square verti
es (see Fig. 17). Then, these 
olors �rst propagate in the 
entral

part of the gadget through the ex
lusive 
rossover-box and the pair-dupli
ator.

It also propagates through the Western one-way 
olor-
onverter. The 
entral

vertex w is then white sin
e it shares a triangle with a pair (b; g). Thus, the

Eastern one-way 
olor-
onverter is 
onne
ted to a pair holding (white; gray),

and these 
olors are propagated through the 
onverter to the Eastern pair

(w; g). Thus, the Eastern vertex b sharing a triangle with this pair (w; g) is

bla
k, and �nally, (bla
k; gray) has been propagated to all round pairs (b; g).

Also noti
e that the Western 
olor-
onverter behaves as dark 
onverter while

the Eastern one behaves as a light 
onverter. Both 
olor-
onverters are one-

way and hen
e high(x) and low(x) 
annot be gray. There are now three 
ases

depending on C(x):

� Suppose C(x) = bla
k (leftmost 
ase in Fig. 17). Then the dark 
onverter

outputs C(high(x)) = bla
k, and the light 
onverter outputs C(low(x)) =

bla
k.

� Suppose C(x) = gray (
entral 
ase in Fig. 17). Then the dark 
onverter

outputs C(high(x)) = bla
k, and the light 
onverter outputs C(low(x)) =

white.

� Suppose C(x) = white (rightmost 
ase in Fig. 17). Then the dark-
onverter

outputs C(high(x)) = white, and the light 
onverter outputs C(low(x)) =

white. �

Proof of the behavior of the Boolean 
rossover-box. Let C be a 3-


oloring for the Boolean 
rossover-box and assume w.l.g, that one of the

pairs (b; g) holds (bla
k; gray), e.g., the pairs of square verti
es (see Fig. 18).

The palette-referen
e is propagated to all pairs (b; g) via ex
lusive 
rossover-

boxes, pair-dupli
ators, and one-way 
olor-
onverters. Moreover, for all ver-

ti
es named w, C(w) = white sin
e they share a triangle with b and g.

Note that both 
olor-
onverters on the verti
al line (y; y

0

) behave as light-


onverters while both 
olor-
onverters on the horizontal line (x; x

0

) behave as
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dark-
onverters. The four 
olor-
onverters are one-way, and hen
e x, y, x

0

, y

0


annot be gray. Also, i and i

0


annot be white be
ause they are adja
ent to

w. Now, there are two main 
ases depending on C(x):

� Suppose C(x) = white (leftmost 
ases in Fig. 18). Then the leftmost light-


onverter outputs C(i) = gray, the ex
lusive 
rossover-box outputs C(i

0

) =

gray, and the rightmost light-
onverter outputs C(x

0

) = white. There are

two sub
ases depending on C(y):

� Suppose C(y) = white (upper leftmost 
ase in Fig. 18). Then the upper

dark-
onverter outputs C(j) = white, the ex
lusive 
rossover-box outputs

C(j

0

) = white, and the lower dark-
onverter outputs C(y

0

) = white.

� Suppose C(y) = bla
k (lower leftmost 
ase in Fig. 18). Then the upper

dark-
onverter outputs C(j) = bla
k (gray is ex
luded by the ex
lusive


rossover-box). The ex
lusive 
rossover-box outputs C(j

0

) = gray, and

the lower dark-
onverter outputs C(y

0

) = bla
k.

� Suppose C(x) = bla
k (rightmost 
ases in Fig. 18). Then the leftmost light-


onverter outputs C(i) = bla
k, the ex
lusive 
rossover-box outputs C(i

0

) =

bla
k, and the rightmost light-
onverter outputs C(x

0

) = bla
k. There are

two sub
ases depending on C(y):

� Suppose C(y) = white (upper rightmost 
ase in Fig. 18). Then the upper

dark-
onverter outputs C(j) = white, the ex
lusive 
rossover-box outputs

C(j

0

) = white, and the lower dark-
onverter outputs C(y

0

) = white.

� Suppose C(y) = bla
k (lower rightmost 
ase in Fig. 18). Then the upper

dark-
onverter outputs C(j) = gray (bla
k is ex
luded by the ex
lusive


rossover-box). The ex
lusive 
rossover-box outputs C(j

0

) = gray, and

the lower dark-
onverter outputs C(y

0

) = bla
k. �

Proof of the behavior of the unrestri
ted 
rossoverbox. Let C be a

3-
oloring for the unrestri
ted 
rossover-box, and assume w.l.g. that one of

the pairs (b; g) holds (bla
k; gray), e.g. the pair of square verti
es. Observe

that bla
k and gray are resp. propagated to all round verti
es b and g via

the ex
lusive 
rossover-boxes, pair-dupli
ators, prisms and Boolean 
rossover-

boxes. C(x) is de
omposed by the leftmost (mirrored) prism into C(l

x

) =

C(low(x)) and C(h

x

) = C(high(x)). Then C(l

x

) is propagated to l

00

x

and l

0

x

through the two lower Boolean 
rossover-boxes, and similarly C(h

x

) is prop-

agated to h

00

x

and h

0

x

through the two upper Boolean 
rossover-boxes. But

l

0

x

= low(x

0

) and h

0

x

= high(x

0

), the de
omposition of C(x

0

) via the rightmost

(non-mirrored) prism, and therefore C(x) = C(x

0

). Similarly, C(low(y)) =

C(l

y

) = C(l

0

y

) = C(l

00

y

) = C(low(y

00

)) and C(high(y)) = C(h

y

) = C(h

0

y

) =

C(h

00

y

) = C(high(y

00

)) and �nally C(y) = C(y

0

). We 
on
lude that the gadget

has nine possible lo
al states resp. 
orresponding to the nine 
on�gurations of

Fig. 19. �
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B The equivalen
e of (PLAN-)SAT and (PLAN-)1/3-SAT

In this appendix we brie
y re
all why (PLAN-)SAT and (PLAN-)1/3-SAT are

parsimoniously redu
ible ea
h other.

Redu
ing (PLAN-)1/3-SAT to (PLAN-)SAT is trivial sin
e any 1/3-
lause

(x; y; z) 
an be parsimoniously simulated with three 2-
lauses and one 3-
lause:

:x _:y, :y _:z, :z _ :x and x_ y _ z. Moreover the planarity is preserved

sin
e to any 3-star of any simulated 1/3-
lause 
orresponds the 3-star of its

fourth simulating 
lause embedded in the hexagon formed by its �rst three

simulating 
lauses.

In order to redu
e (PLAN-)SAT to (PLAN-)1/3-SAT we build gadgets to

simulate Boolean operators. Figure B.1 shows the gadget NOR-EQV (with

variable verti
es as rounds and 1/3-
lause verti
es as squares): This gadget,

whi
h four distinguished verti
es x, e, y, n embedded in this 
lo
kwise order, is

a \two in one"-gadget that simulates both the negated-or operator (NOR) and

the equivalen
e operator (EQV). More pre
isely, x and y are the input verti
es

of the operator, e and n are the output verti
es, and in any interpretation (1)

e = EQV (x; y), i.e. e, (x, y), and (2) n = NOR(x; y), i.e., n, :(x _ y).

x y x y x yx y x yn n nn n

eqv
nor

e

ji

e e e

j j ji i i i j

e

eqv
nor

eqv
nor

eqv
nor

eqv
nor

the four configurations

the four local statesimplementation

representation

x

n

e

y x

n

e

y x

n

e

y x

n

e

y x

n

e

y

Fig. B.1. The NOR-EQV operator

Indeed, there are two 
ases:

� At least one of the three values i, j and n is true (three �rst lo
al states in

Fig. B.1). The gadget is symmetri
, so w.l.g. let n be true (�rst lo
al state

in Fig. B.1). Then x and i { resp. y and j { are for
ed to be false be
ause

of the 1/3-
lause (x; i; n) { resp. the 1/3-
lause (y; j; n). Now, both i and j

being false, it follows that e must be true be
ause of the 1/3-
lause (e; i; j).

The two 
entral lo
al states are rotations of this �rst lo
al state.

� All of the values i, j and n are false (last lo
al state in Fig.B.1). Then the

1/3-
lauses (x; i; n), (y; j; n) and (e; i; j) resp. 
oer
e that x, y and e be all

true.
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The set of 
on�gurations is summed-up by the following-truth table:

x y n e

false false true true

true false false false

false true false false

true true false true

One 
an 
he
k that all true/false 
ombinations for x and y are possible,

so n and e 
an be seen as fun
tions of x and y with n = NOR(x; y) and

e = EQV (x; y) as stated above.

Though the NOR operator is 
omplete for propositional logi
, we design two

other operators in 1/3-SAT for more 
onvenien
e. The NOT operator is shown

on the left of Fig. B.2: it has two distinguished verti
es x and n and parsimo-

niously 
oer
es that n, :x.

i

j

k

i

j

k

i

j

k

i

k k

i

nx x n x n t tf f

x n t fF

not − representation

not − implementation

not − the two configurations

not − the two local states

x n x n t fF

const − implementation

const − representation

const − the local state

const − the configuration

not Tnot not T

Fig. B.2. The NOT operator and the CONST operator

There are two 
ases:

� Suppose j is false. Then, either i or k is true by the 1/3-
lause (i; j; k).

The gadget being symmetri
, assume w.l.g. that i is true and k is false. By

the 1/3-
lause (x; i; n), it follows that both x and n are false, and �nally k

must be true by the 1/3-
lause (x; k; n). A 
ontradi
tion.

� So, j is always true, and i and k are always false. And both 1/3-
lauses

(x; i; n) and (y; j; n) 
oer
es that exa
tly one of x and n is true, i.e. n, :x.

Note that sin
e j is always true, merging the verti
es x and j of the gadget

NOT eliminates the 
on�guration where x is false. This way, one obtains the

gadget CONST shown on the right of Fig. B.2. This gadget has two distin-

guished verti
es t and f and only one 
on�guration, with t being the 
onstant

true and f the 
onstant false.

The operator OR is built by 
haining the gadget NOR with the gadget NOT,

and a 
lause of arbitrary length is built by 
haining several OR operators

as in Fig. B.3, the terminal output vertex of the 
hain being 
onne
ted to
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a gadget CONST, 
oer
ing the 
lause to be satis�ed. The 
onstru
tion is

obviously parsimonious and also preserves the embedding of the simulated


lause, so the simulation of all the 
lauses of any (planar) input SAT instan
e

will yield a (planar) 1/3-SAT instan
e with as many solutions. This 
ompletes

the redu
tion from (PLAN-)SAT to (PLAN)-1/3-SAT.

eqv
nor

eqv
nor

eqv
nor

w x y z

w x y z

f TF

not not

not not

Fig. B.3. Simulation of the 
lause (w _ :x _ :y _ z) with PLAN-1/3-SAT
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C The equivalen
e of 1/3-SAT and PLAN-1/3-SAT

In this se
tion, we give dire
t arguments to show that 1/3-SAT and PLAN-1/3-

SAT are parsimoniously redu
ible ea
h other: The redu
tion from PLAN-1/3-

SAT to 1/3-SAT is the identity, and �nding the 
onverse redu
tion boils down

to �nding a parsimonious 
rossover-box. An implementation of this gagdet is

obtained by 
onne
ting four gadgets NOR-EQV (as de�ned in the previous

se
tion) in the way of Fig. C.1. This gadget has four distinguished verti
es x,

y, x

0

and x

0

embedded in this 
lo
kwise order. This gadget parsimoniously 
o-

er
es any two distinguished verti
es lying in opposite 
orners to be equivalent

independently of the assignment of the other two distinguished verti
es.
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Fig. C.1. Crossover-box for PLAN-1/3-SAT

Note that the 
entral vertex is 
onne
ted to the EQV slot of all the gadgets

NOR-EQV. So, there are two 
ases:

� The 
entral vertex is true: Then the verti
es x, x

0

, y, y

0

are all equivalent,

i.e., either all false or all true. This yields the two leftmost 
on�gurations

(false; false; false; false) and (true; true; true; true) on Fig. C.1.

� The 
entral vertex is false: Then x is not equivalent to y whi
h itself

is not equivalent to x

0

. So x and x

0

turn out to be equivalent. Similarly

y and y

0

are equivalent, and this yields the two rightmost 
on�gurations

(false; true; false; true) and (true; false; true; false) on Fig. C.1.

Therefore, the gadget is a parsimonious 
rossover-box for PLAN-1/3-SAT, and


an be used in the usual way to redu
e parsimoniously 1/3-SAT to PLAN-

1/3-SAT in quadrati
 time.
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D The redu
tion of (PLAN-)3-COL to (PLAN-)1/3-SAT

It is easy to redu
e 3-COL to 1/3-SAT. The 
onstraint that any vertex of

the input graph is 
olored with exa
tly one 
olor among three is 
onveniently

simulated with 1/3-
lauses: For ea
h vertex x in the input graph, 
reate three

variables w(x), g(x) and b(x) { meaning that x is resp. 
olored white, gray

and bla
k { and 
reate a 1/3-
lause (w(x); g(x); b(x)). Now for a given 
olor 


and a given edge (x; y), we want that exa
tly one of the three ex
lusive 
ases

holds:

� x has the 
olor 
,

� y has the 
olor 
,

� neither x nor y have the 
olor 
,

so the 
onstraint that any two adja
ent verti
es have distin
t 
olors is ex-

pressed by three 1/3-
lauses per edges: For ea
h edge (x; y) of the input

graph, 
reate the verti
es w(x; y), g(x; y) and b(x; y) { meaning that neither

x nor y are 
olored resp. white, gray and bla
k { and 
reate the 1/3-
lauses

(w(x); w(x; y); w(y)), (g(x); g(x; y); g(y)) and (b(x); b(x; y); b(y)). See Fig. D.1

This nearly ends the parsimonious redu
tion from 3-COL to 1/3-SAT: we must

remove the isomorphi
 solutions of the 3-COL instan
e. This is done by 
hoos-

ing an arbitrary edge (u; v) of the input graph and by for
ing the 3-
oloring

of u and v to, say resp. white and bla
k, whi
h is simulated by 
onne
ting

w(u) and b(v) to the distinguished vertex t of a gadget CONST, as de�ned in

Appendix B.1.

w(x) g(x) b(x)

b(y)g(y)w(y)

w(x) b(x)g(x)

w(y) g(y) b(y)
w(x) g(x) b(x)

g(x,y) b(x,y)w(x,y)

x

y

g(x,y) b(x,y)w(x,y)

its simulation

x

y

a 3−COL instance
a vertex in simulation of the vertex

with a 1/3−clause

x

an edge in
a 3−COL instance

simulation of the edge
with 1/3−clauses

a 3−coloring
along an edge

Fig. D.1. Redu
tion from 3-COL to 1/3-SAT

The planarity is not preserved be
ause of the explosion of ea
h vertex into

three variables, whi
h makes the 1/3-
lauses simulating distin
t edges in
ident

to x overlap. In order to redu
e PLAN-3-COL to PLAN-1/3-SAT, one also


reates three variables per vertex x { namely w(x), g(x), b(x) { 
onne
ted by

a 1/3-
lause (w(x); g(x); b(x)), but we also dupli
ate them as many times as

the degree d(x) of vertex x into new variables w

i

(x), g

i

(x), b

i

(x), 1 � i � d(n),

the i

th

3-uple being denoted slot

i

(x) as a whole. The dupli
ation is done by


haining the parsimonious 
rossover-box for PLAN-1/3-SAT (see Appendix

C) as in Fig. D.2. Note that the 
lo
kwise order for slot

i

(x) is b

i

(x), g

i

(x) and

then b

i

(x).
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slot 1 (x) slot 2 (x) slot 3 (x)

w1(x) g1(x) b1(x) w2(x) g2(x) b2(x) w3(x) g3(x) b3(x)

w(x)

b(x)

g(x)

Fig. D.2. Dupli
ation of 
olor slots

Now, ea
h edge (x; y) of the input graph 
an be asso
iated with a pair of slots

(slot

i

(x); slot

j

(y)) with respe
t to the 
hosen embedding: For ea
h su
h edge,

we 
reate the three verti
es w(x; y); g(x; y); b(x; y). However, one 
annot di-

re
tly 
reate the three 1/3-
lauses (w

i

(x); w(x; y); w

j

(y)), (g

i

(x); g(x; y); g

j

(y))

and (b

i

(x); b(x; y); b

j

(y)), to simulate the edge (x; y) be
ause both slots slot

i

(x)

and slot

j

(y) have the same 
lo
kwise order for b; g; w and they fa
e ea
h

other. So, one of the two slots, say slot

i

(x) must be \twisted" to reorder

b

i

(x); g

i

(x); w

i

(x) in 
ounter
lo
kwise order. This is done by using three 
rossover-

boxes as in Fig. D.3, where b

0

i

(x); g

0

i

(x); w

0

i

(x) are now in 
ounter
lo
kwise or-

der. We 
an now 
reate the 1/3-
lauses (w

0

i

(x); w(x; y); w

j

(y)), (g

0

i

(x); g(x; y); g

j

(y))

and (b

0

i

(x); b(x; y); b

j

(y)), to simulate any edge (x; y). Finally, 
hoosing an ar-

bitrary edge (u; v) of the input graph and 
onne
ting w(u) and b(u) to the

distinguished vertex t of a gadget CONST ends the parsimonious redu
tion

from PLAN-3-COL to PLAN-1/3-SAT.

g(x)

w(x)

b(x)

w’(x)

g’(x)

b’(x)

g’’(x)

w’’(x) b’’(x)

Fig. D.3. Reversal of the 
lo
kwise order of the 
olor slots
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