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Abstrat. We exhibit an NP-omplete problem de�ned by an existen-

tial monadi seond-order (EMSO) formula over funtional strutures

that is:

1. minimal under several syntati riteria (i.e., any EMSO formula

that further strengthens any riterion de�nes a PTIME problem even

if all other riteria are weakened);

2. unique for suh restritions, up to renamings and symmetries.

Our redutions and proofs are surprisingly very elementary and sim-

ple in omparison with some reent similar results lassifying existential

seond-order formulas over relational strutures aording to their ability

either to express NP-omplete problems or to express only PTIME ones.

Key words: Computational omplexity, desriptive omplexity, �nite
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1 Introdution and main results

1.1 Whih formulas express NP-omplete problems?

In the line of Fagin's Theorem [5℄ whih states that existential seond order logi

(ESO) aptures the lass NP, this paper studies the following natural question:

what is (are) the most simple ESO sentene(s) that de�ne(s) some NP-omplete

problem(s)? This question is somewhat related to two reent papers [7, 4℄ that

ompletely lassi�ed pre�x lasses of ESO over strings and graphs (and more gen-

erally over relational strutures) with respet to their ability to express either

some NP-omplete problems or only tratable (i.e., PTIME) ones. For example,

it is easy to express an NP-omplete problem over graphs, suh as 3-olourability,

in existential monadi seond-order logi (EMSO) with only two �rst-order vari-

ables. In ontrast, one noties that ESO formulas that use only relation ESO vari-

ables and only one �rst-order variable an only de�ne easy (degenerate) proper-

ties on relational strutures. The situation ompletely hanges if funtion symbols

are allowed either in the input signature or among the ESO symbols. For exam-

ple, ESO formulas with only one �rst-order variable x of one of the forms (1-2)

(1) hD;Ei j= 9f 8x  (x; f; E)

(2) hD; fi j= 9U 8x  (x; f ; U)

(where x is quanti�ed over the �nite domain D, E is a binary relation symbol,



f and U are lists of unary funtion symbols and of monadi relation symbols

respetively, and  is quanti�er-free) an express some NP-omplete problems.

More preisely, [9℄ has reently proved that formulas of form (1) exatly de�ne

graph problems (suh as the Hamiltonian yle problem) that are reognizable

in nondeterministi linear time O(n) where n is the number of verties in the

graph, and [1℄ states that any problem is linearly reduible to Sat i� it is linearly

reduible to some problem expressible by some formula of the form (2) (see also

[12℄). Moreover, as proved in [1℄, it an be assumed that the unary funtions f

of the input strutures are permutations: the lass of suh problems are alled

LIN-LOCAL sine they are linearly reduible to loal problems.

In this paper, we exhibits a formula of the form (2) over funtional strutures

that de�nes some NP-omplete problem and is minimal for several riteria over

the signature of input strutures, the pre�x and the matrix of the formula;

more preisely, the further strengthening of any riterion makes the problem fall

in PTIME even if all others riteria are weakened. Moreover, this problem is

essentially unique, up to renamings and symmetries.

Finally, in ontrast with our results about funtional strutures, notie that

the similar question of determining the minimal ESO formulas (with two �rst-

order variables) that de�ne NP-omplete problems over relational strutures is,

to our knowledge, widely open and seems rather diÆult to us: e.g., the uniity

of suh a formula is very dubious.

1.2 Minimal formulas for NP-omplete problems

We study the problem Min

0

de�ned by the very simple EMSO formula '

0

of

the partiular form (2) that follows.

Notation 1. Let '

0

denote the ff; gg-formula in onjuntive normal form (CNF)

'

0

: 9U 8x  

0

(x) where  

0

is the onjuntion

 

0

: (Ux _ Ufx) ^ (:Ux _ :Ufx _ :Ugx);

and f , g are unary funtion symbols. Let Æ

0

denote the following formula in dis-

juntive normal form (DNF) whih is logially equivalent to '

0

Æ

0

: 9U 8x (Ux ^ :Ufx) _ (Ux ^ :Ugx) _ (:Ux ^ Ufx):

The problem Min

0

is de�ned as the set of �nite models hD; f; gi of '

0

(or of Æ

0

).

We shall also study the following subproblems of Min

0

:

Notation 2. De�neMin

1

as the set of �nite models hD; f; gi of '

0

, where f and

g are permutations of D. For some funtional struture hD; f; gi, let G(D; f; g)

denote the graph (V;E) de�ned by V = D and E = f(x; fx) : x 2 Dg[f(x; gx) :

x 2 Dg [ f(fx; gx) : x 2 Dg. De�ne Min

2

as the set of �nite models hD; f; gi

of '

0

, where f and g are permutations of D and G(D; f; g) is planar.

Our main results use the following notations:

Notation 3. The atoms of a formula are its atomi subformulas. In partiular,

the distint atoms of '

0

(or Æ

0

) are Ux, Ufx and Ugx. The length of a formula

is the total number of ourrenes of atoms in it. The disjunts of a DNF formula

are alled its antilauses.



Theorem 1 (NP-ompleteness). Min

0

, Min

1

and Min

2

are NP-omplete.

Theorem 2 (Minimality). If P 6= NP, '

0

(resp. Æ

0

) is, for the syntati ri-

teria enumerated in the table below, a minimal EMSO formula in CNF (resp. in

DNF) of the form 9U 8x  (where  is quanti�er-free and x is a list of �rst-order

variables) that de�nes an NP-omplete problem over funtional strutures.

input signature 2 unary funtions distint atoms 3

EMSO symbols 1 lauses in CNF '

0

2

FO variables 1 length of CNF '

0

5

ompositions of funtions 0 antilauses in DNF Æ

0

3

equalities 0 length of DNF Æ

0

6

That means that if any of these riteria is strenghtened and the other riterias

are weakened then the problem so de�ned is PTIME; e.g, any formula of the form

9U 8x  with length of  < 5 in CNF de�nes a PTIME problem.

Theorem 3 (Uniity). If P6=NP, '

0

(resp. Æ

0

) is { up to symmetries { the

unique minimal EMSO formula in CNF (resp. in DNF) of the form 9U 8x  

(where  is quanti�er-free) that de�nes an NP-omplete problem over funtional

strutures. The symmetrial formulas are obtained by any permutation of the

terms x, fx and gx and by swap of U and :U in '

0

(resp. Æ

0

).

More preisely, all the symmetrial formulas of '

0

essentially de�ne the same

minimal NP-omplete problem over permutations (resp. planar permutations)

strutures. In ase of (general) funtional strutures, one obtains essentially two

minimal NP-omplete problems: the one de�ned by '

0

itself, and the one de�ned

by the following formula '

0

0

, that is '

0

with terms x and gx permuted:

'

0

0

: 9U 8x (Ugx _ Ufx) ^ (:Ugx _ :Ufx _ :Ux)

1.3 Minimal formulas for #P-omplete problems

Besides NP-ompleteness, another important onept of the theory of omplex-

ity is #P-ompleteness [14℄. It is also natural to look for a minimal logial

formula that de�nes some #P-omplete problem. In this regard, it is well known

that the generi redution from any NP problem to Sat an (easily) be made

parsimonious with a bijetive and PTIME-omputable orrespondene between

solutions. That means that the problem Sat not only \simulates" the deision

proess of any problem in NP but also \reprodues" the number of its solutions

and the \struture" of this set of solutions.

Notation 4. For any problem A in NP, let us denote by #A the \natural"

ounting problem assoiated to A, i.e., the problem of ounting the \natural"

solutions of the instanes of A. #P is the lass of suh ounting problems; e.g.,

#Sat is the funtion whih maps eah propositional formula F to the number of

assignments I over the variables of F suh that I j= F ; similarly, #Min

1

is the

funtion whih maps eah permutation struture S = hD; f; gi to the number of

prediates U suh that (S; U) j= 8x  

0

(x).



We say that an ordered pair (�; �) is a weakly parsimonious redution from

#A to #B if � is a PTIME redution from A to B, � is a PTIME-omputable

funtion valued in positive integers suh that for eah instane w of A we have

#fsolutions of A for wg = �(w) � #fsolutions of B for �(w)g. If furthermore

� = 1, then � is alled a parsimonious redution. We onjeture that:

Conjeture 1. There exists no parsimonious redution from problem #Sat to

problems #Min

1

or #Min

2

.

Nevertheless, we prove in this paper that:

Theorem 4. There exists weakly parsimonious redutions from problem #Sat

to problems #Min

1

and #Min

2

.

In regard to Conjeture 1 onerning Formula '

0

, it is natural to look for

another simple EMSO formula de�ning a problem to whih Sat (and hene any

NP problem) parsimoniously redues. Let '

nand

denote the ff; gg-formula

'

nand

: 9U 8x  

nand

(x) where  

nand

is

 

nand

: Ux () :(Ufx ^ Ugx) or equivalently in CNF

 

nand

: (Ux _ Ufx) ^ (Ux _ Ugx) ^ (:Ux _ :Ufx _ :Ugx):

Clearly,  

nand

(resp. '

nand

) implies  

0

(resp. '

0

). The formula '

nand

de�nes the

following problems:

Notation 5. De�ne Nand

1

as the set of �nite models hD; f; gi of '

nand

where

f and g are permutations of D. De�ne Nand

2

as the set of �nite models hD; f; gi

of '

nand

where f and g are permutations of D and G(D; f; g) is planar.

In ontrast to Conjeture 1, we an prove that:

Theorem 5. (i) #Sat parsimoniously redues to #Nand

1

(resp. #Nand

2

).

(ii) If Conjeture 1 holds and P 6= NP, then '

nand

is (up to symmetries) the

unique minimal EMSO formula for whih (i) holds, i.e., that de�nes a problem

over permutation strutures hD; f; gi to whih #Sat parsimoniously redues.

Surprisingly, our proofs of ompleteness are rather simple and the redutions

involved in Theorems 1 and 5 are essentially the same one redution � : F 7!

S(F ) desribed in the next setion.

2 Proofs of our results

2.1 The strutures involved

Let us reall the three kinds of instanes of our problems.

De�nition 1. A funtion struture is a �nite struture hD; f; gi where f; g :

D �! D are unary funtions. A funtion struture hD; f; gi is a permutation

struture (resp. is a planar permutation struture) if f; g are permutations of D

(resp. are permutations of D suh that the graph G(D; f; g) is planar).



Remark 1. A permutation struture hD; f; gi is naturally given by its f - and

g-iruits, where an f-iruit of length k is an orbit a; fa; f

2

a; � � � ; f

k

a = a.

De�nition 2 (Planar formula and Plan-Sat). Let F be a propositional

formula in CNF. Let G(F ) denote the following bipartite graph (V;E) where

V is the disjoint union of the set of variables and the set of lauses of F , and

E is the set of pairs (v; C) suh that v is a variable that ours in lause C.

F is a planar formula if G(F ) is a planar graph, and Plan-Sat is de�ned as

the satis�ability problem of planar formulas.

Our proofs of ompleteness use the NP-omplete problem Plan-Sat [13℄.

2.2 A gadget struture

We are going to desribe a redution � : F 7! S(F ) that assoiates to eah

Sat (resp. Plan-Sat) instane F a permutation struture S(F ) that ontains

as substrutures many ourrenes of the following gadget denoted True whose

role is essential in our redution.

De�nition 3. True or True(�; �; ) is the gadget depited on the left of Fig. 1.

The symbolization means that the gadget True plays the role of the Boolean

onstant \true" (or \1"). More formally, the following lemma expresses that in

any ase, U() an and should be true whereas the value of U(g) (reahed via

the \pending" outgoing g-edge of ) is free.

Lemma 1. Let True(�; �; ) be a gadget inluded in a permutation struture

S = hD; f; gi and U : D �! f0; 1g be a monadi prediate

1

.

1. If (S; U) j= '

0

then we have U(�) = 1, U(�) = 0 and U() = 1;

2. Conversely: if U(�) = 1, U(�) = 0 and U() = 1, then the struture

(True; U) satis�es 8x  

nand

(and hene 8x  

0

); in other words,  

nand

(x)

is satis�ed by eah element x = �; �;  independently of the value of U(g).

Proof. Easy and left to the reader. ut

2.3 Our redution

Let us now onstrut our redution � : F 7! S(F ) where F is a Sat (resp.

Plan-Sat) instane, i.e., a onjuntion of lauses F = C

1

^ C

2

^ � � � ^ C

q

. In

the desription of the permutation struture S(F ), we freely make use of the

following notation:

Notation 6. Whenever there exists some gadget True(�; �; ) suh that g(x) =

 and g() = y, we will often write g(x) = True and g(True) = y by ommodity.

1

For onveniene, we onfuse truth values \true" and \false" with 0 and 1 and assim-

ilate a monadi prediate U � D to its harateristi funtion U : D �! f0; 1g.
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Fig. 1. The gadget True and the redution around variable x

i

and lause C

j

Let us now desribe the f - and g-iruits of our permutation struture S(F ):

� Construt a f -iruit (x

1

i

; nx

1

i

; x

2

i

; nx

2

i

; � � � ; x

r�1

i

; nx

r�1

i

; x

r

i

; nx

r

i

) for eah

variable x

i

with r ourrenes in F . Verties x

k

i

, nx

k

i

orrespond to the k

th

ourrene of x

i

in F .

�Construt a f -iruit (nC

`

j

; C

`

j

; nC

`�1

j

; C

`�1

j

; � � � ; nC

1

j

; C

1

j

; nC

0

j

) of odd length

for eah lause C

j

= �

1

_ � � � _ �

`

in F , where the C

k

j

and nC

k

j

are new el-

ements orresponding to the \pre�x" of length k of the lause C

j

de�ned as

pre�x

k

(C

j

) = �

1

_ � � � _ �

k

; also onstrut the ` + 1 g-iruits (nC

k

j

;True) for

0 � k � ` using `+ 1 new gadgets True.

� If the k

th

literal of C

j

is the h

th

ourrene { resp. negation of the h

th

ourrene { of x

i

, onstrut the g-iruits (C

k

j

; nx

h

i

;True) and (x

h

i

;True) { resp.

(C

k

j

; x

h

i

;True) and (nx

h

i

;True) { using two new gadgets True.

This ompletes the desription of S(F ) whih is represented on the right of

Fig. 1. The following lemma, that is obvious by the onstrution of S(F ), means

that our redution preserves planarity.

Lemma 2. F is a planar formula i� S(F ) is a planar permutation struture.

2.4 Properties of the redution

Lemmas 3 and 4 that follow mean together that � : F 7! S(F ) is a redution

(resp. parsimonious redution) from Sat to the problem de�ned by '

0

(resp.

'

nand

). First, the following fat whose proof is straightforward will be useful in

our study of the f -iruits of S(F ).

Fat 1. Let S = hD; f; gi be a permutation struture and U : D �! f0; 1g be

a monadi prediate suh that (S; U) j= 8x  

0

(x). Then, for every a 2 D suh

that (S; U) j= U(ga) (i.e., U(ga) = 1), it holds U(a) = 1� U(fa).

Here is the �rst impliation involved in the equivalene to be proved, i.e.,

S(F ) j= '

0

(resp. '

nand

) i� F is satis�able.



Lemma 3. If S(F ) satis�es '

0

then F is satis�able.

In order to prove Lemma 3, we need the following two laims:

Claim 1 (Existene of a witness literal for eah lause). Let U be a

prediate suh that (S(F ); U) j= 8x  

0

(x). For eah lause C

j

, there exists at

least one literal � in C

j

for whih it holds: U(nx

h

i

) = 0 if � = x

i

, and U(x

h

i

) = 0

if � = :x

i

, where � is the h

th

ourrene of x

i

.

Claim 2 (Coherene of the ourrenes of the same variable). Let U be a

prediate suh that (S(F ); U) j= 8x  

0

(x). For eah variable x

i

ourring r times,

it holds: U(x

1

i

) = 1�U(nx

1

i

) = U(x

2

i

) = 1�U(nx

2

i

) = � � � = U(x

r

i

) = 1�U(nx

r

i

):

We �rst prove Claims 1 and 2, and then dedue Lemma 3.

Proof (of Claim 1). Assume that the laim is false. Then there is a lause C

j

suh that for eah literal �, it holds U(nx

h

i

) = 1 if � = x

i

and U(x

h

i

) = 1 if

� = :x

i

. This implies U(ga) = 1 for eah element a of the f -iruit of C

j

, and

hene U(a) = 1� U(fa) by Fat 1, whih is impossible sine the length of this

f -iruit is odd. ut

Proof (of Claim 2). Immediate onsequene of Fat 1 applied to eah element a

of the f -iruit of x

i

sine we always have g(a) = True and thus U(ga) = 1. ut

Proof (of Lemma 3). De�ne the assignment I of the variables F as I(x

i

) =

U(x

h

i

) = 1� U(nx

h

i

), for eah variable x

i

and any 1 � h � r, whih is oherent

by Claim 2. Claim 1 ensures that in eah lause C

j

of F , there is some literal �

suh that I(�) = 1. Hene, I j= C

j

and I j= F . ut

Lemma 4 states the most preise property of our redution � : F 7! S(F ).

Lemma 4. There is a bijetive orrespondene I 7! U

I

of the set of satisfying

assignments fI : I j= Fg onto the set of monadi prediates fU : (S(F ); U) j=

8x  

nand

(x)g. That means that � : F 7! S(F ) is a parsimonious redution from

Sat to the problem de�ned by '

nand

.

Proof (of Lemma 4). For eah I suh that I j= F , let us onstrut its assoiated

monadi prediate U

I

, on the domain D of S(F ). The orretion will be ensured

by Claim 3 and its onverse Claim 4:

� Set U

I

(�) = 1, U

I

(�) = 0 and U

I

() = 1 for eah gadget True(�; �; ) in

S(F ): this is justi�ed by Lemma 1;

� Set U

I

(x

h

i

) = I(x

i

) and U

I

(nx

h

i

) = 1� I(x

i

) for eah variable x

i

ourring

r times in F and eah 1 � h � r;

� For eah lause C

j

= �

1

j

_� � �_�

`

j

, set U

I

(nC

0

j

) = 1, and for k = 1; � � � ; `, set

U

I

(C

k

j

) = value(pre�x

k

(C

j

); I), and U

I

(nC

k

j

) = 1� value(pre�x

k

(C

j

); I), where

pre�x

k

(C

j

) = �

1

j

_ � � � _ �

k

j

and in partiular C

j

= pre�x

`

(C

j

).

In the following, we essentially use the well-known fat that all the Boolean

onnetives an be expressed by means of the NAND one only. More preisely,

1� v = NAND(v; 1) and OR(v; v

0

) = NAND(1� v; 1� v

0

).



Claim 3. (S(F ); U

I

) j= 8x  

nand

(x).

Proof (of Claim 3). For eah element a of the f -iruit of any variable x

i

, we

have U

I

(ga) = 1 and U

I

(a) = 1 � U

I

(fa), and hene (S(F ); U

I

) j= U(a) ()

NAND(U(fa); U(ga)). For every lause C

j

of length `, one easily obtains the

following equalities for 1 � k � ` if C

k

j

= C

k�1

j

_ x

h

i

:

� U

I

(nC

k

j

) = 1� U

I

(C

k

j

) = NAND(U

I

(C

k

j

); 1), and

� U

I

(C

k

j

) = NAND(U

I

(nC

k�1

j

); U

I

(nx

h

i

));

and similarly in the ase C

k

j

= C

k�1

j

_ :x

h

i

. This proves (S(F ); U

I

) j=  

nand

(a)

for every element a 6= nC

0

j

in the f -iruit of C

j

. Finally, this also holds for

a = nC

0

j

sine U

I

(nC

`

j

) = value(:C

j

; I) = 0 and, as a onsequene, U

I

(nC

0

j

) =

1 = NAND(U

I

(nC

`

j

); 1) as required. This ompletes the proof of Claim 3. ut

It remains to prove the onverse of Claim 3.

Claim 4. Let U be a monadi prediate suh that (S(F ); U) j= 8x  

nand

(x).

Then there is an assignment I, of ourse unique, suh that U = U

I

and I j= F .

Proof (of Claim 4). It is a variant of the proof of Lemma 3 and is left to the

reader. This ompletes the proof of Lemma 4. ut

Lemmas 2, 3 and 4 together imply the following:

Corollary 1. (i) Sat (resp. Plan-Sat) redues to problem Min

1

(resp. Min

2

)

by the redution � : F 7! S(F ). (ii) #Sat (resp. #Plan-Sat) parsimoniously

redues to problem #Nand

1

(resp. #Nand

2

) by the same redution.

So, we have proved Theorems 1 and 5(i), by making use of the known result

that #Sat parsimoniously redues to #Plan-Sat [13℄. A areful analysis of our

redution � : F 7! S(F ) from Sat (Plan-Sat) to Min

1

(Min

2

) shows that the

only part of S(F ) where this redution is not parsimonious are the f -iruits of

the lauses of F when at least two literals of some lause of F are true together.

On the other hand, it is known that the problem

1

3

-Sat (also denoted one-in-

three-SAT, see [6℄) and its planar restrition Plan-

1

3

-Sat de�ned below are

equivalent to Sat and Plan-Sat under parsimonious redutions (see [10℄).

De�nition 4. Let

1

3

-Sat (resp. Plan-

1

3

-Sat) denote the satis�ability problem

of a onjuntion of

1

3

-lauses (resp. planar

1

3

-lauses) of the form

1

3

(a; b; ) whose

meaning is \exatly one of the three variables a; b;  is true".

Theorem 4 is a straightforward onsequene of the following lemma:

Lemma 5. #

1

3

-Sat (resp. #Plan-

1

3

-Sat) redues to #Min

1

(resp. #Min

2

)

under a weakly parsimonious redution.

Proof. Let F 7! F

0

be the trivial parsimonious and planarity-preserving redu-

tion from

1

3

-Sat (resp. Plan-

1

3

-Sat) to Sat (resp. Plan-Sat) that replaes

every

1

3

-lause

1

3

(a; b; ) by the logially equivalent onjuntion (a _ b _ ) ^



(:a _ :b)^(:b _ :)^(: _ :a). One noties that in eah lause of this onjun-

tion, exept one 2-lause, e.g., C = :a _ :b, exatly one literal is true and both

literals of C are true. Let us now onsider the omposed redution �

0

: F 7! S(F

0

)

from

1

3

-Sat (Plan-

1

3

-Sat) to Min

1

(Min

2

). If F ontains q

1

3

-lauses then it

holds #fU : (S(F

0

); U) j= 8x  

0

(x)g = 2

q

�#fI : I j= Fg.

This is easily justi�ed by a areful analysis of the f -iruits of lauses (of F

0

)

in S(F

0

): one sees that eah

1

3

-lause of F gives exatly 2 \loal on�gurations"

of the (union of four) f -iruits of the four orresponding lauses of F

0

. ut

2.5 Minimality of '

0

and Æ

0

in Theorem 2

We onsider EMSO formulas of the form: ' : 9U 8x  , where U (resp. x) is a list

of monadi relation symbols (resp. �rst-order variables) and  is quanti�er-free.

Proof. There is nothing to prove about the absene of omposition of funtions

and the absene of equality. We prove the minimality of:

� the input signature (= 2 unary funtion symbols): a famous theorem of

Courelle [2℄, asserts that any MSO property of bounded tree-width strutures

an be heked in deterministi linear time. In partiular, any EMSO property

of �-strutures with � = ff; U

1

; � � � ; U

k

g where f is a unary funtion symbol and

U

1

; � � � ; U

k

are monadi relation symbols is hekable in linear time.

� the number of EMSO symbols (= 1): immediate sine any �rst-order (FO)

property is AC

0

and thus is PTIME.

� the number of FO symbols (= 1): trivial.

� the number of lauses in '

0

(= 2): assume ' is an ESO formula in CNF

with only one lause. If some ESO symbol ours in ' then ' de�nes a trivial

\yes"-problem. Otherwise, ' de�nes a �rst-order property.

� the length of '

0

(= 5): if the length of ' in CNF is � 4 then ' either: (i)

ontains only lauses of length � 2, or (ii) ontains only one lause (of length 3

or 4), or (iii) ontains exatly one 3-lause and one unit lause. In ase (i),

' is ESO-Krom and, as a onsequene, de�nes a PTIME problem [8℄. In ase

(ii), ' de�nes a PTIME problem as it was notied above. Finally, in ase (iii),

one observes that the 3-lause either ontains � 1 positive literal or ontains

� 1 negative literal. Hene, ' is either ESO-Horn or ESO-Anti-Horn, and thus

de�nes a PTIME problem [8℄.

� the number of distint atoms (= 3): if ' in CNF ontains � 2 distint

atoms, then its lauses are trivially of length � 2, and ' is ESO-Krom.

� the number of antilauses in Æ

0

(= 3): notie that any formula ' in DNF

that ontains � 2 disjunts is equivalent to a CNF formula that onsists of

lauses of length � 2.

� the length of Æ

0

in DNF (= 6): w.l.g., assume that ' in DNF is of the

form ' : 9U 8x( 

0

_  

1

), where  

0

(resp.  

1

) is a disjuntion of antilauses in

eah of whih no (resp. at least one) EMSO symbol ours. If  

1

ontains a unit

antilause, then ' de�nes a trivial \yes"-problem. Moreover, if the number of

antilauses in  

1

is � 2, then ' de�nes a PTIME problem. Thus, if ' de�nes an

NP-omplete problem then  

1

onsists of at least 3 antilauses of length � 2. ut



2.6 Uniity up to symmetries of '

0

and Æ

0

in Theorem 3

Let us prove the uniity of '

0

(the proof of Æ

0

is similar). Let ' be an EMSO

formula in CNF that satis�es the onditions of the table of Thereom 2 and de�nes

an NP-omplete problem over funtional strutures hD; f; gi. The list of atoms

that our in ' is Ux, Ufx, Ugx, and ' is of the form 9U 8x  (f; g; U; x),

where  is a onjuntion of two lauses C

1

and C

2

with jC

1

j + jC

2

j = 5 and

jC

1

j < jC

2

j � 3. That implies jC

1

j = 2 and jC

2

j = 3.

Proof. One noties that one lause onsists of positive literals and the other one

onsists of negative literals: otherwise, ' would de�ne a trivial \yes"-problem.

That implies that ' has one of the following two forms '

0

or '

0

0

as de�ned in

Subsetion 1.2, up to permutations of f and g and swap of U and :U :

Formulas '

0

and '

0

0

essentially de�ne the same problem over (planar) per-

mutation strutures hD; f; gi: By replaing x by g

�1

x in the matrix of the

formula '

0

, we immediately get hD; f; gi j= '

0

(f; g) i� hD; f

0

; g

0

i j= '

0

0

(f

0

; g

0

),

where f

0

= g

�1

and g

0

= fg

�1

. This also makes sense for planar permutation

strutures sine G(D; f; g) is planar i� G(D; f

0

; g

0

) is planar. ut

It remains to prove Theorem 5(ii), more preisely reformulated as follows:

assume Conjeture 1 and P 6= NP. Then '

nand

is (up to permutations of x, fx,

gx and swap of U and :U) the unique minimal EMSO ff; gg-formula in CNF

of the form 9U 8x  (x) with the only atoms Ux, Ufx and Ugx that de�nes

a problem over permutation strutures to whih #Sat parsimoniously redues.

More preisely, '

nand

has a minimal number of lauses (= 3), and a minimal

length (= 7).

2.7 Minimality of '

nand

in Theorem 5(ii)

Proof. We prove the minimality of:

� the number of lauses (= 3): learly, any EMSO formula ' of the required

form that de�nes an NP-omplete problem (over permutation strutures) with

exatly two lauses has exatly one purely negative lause and one purely positive

lause, and has at least one 3-lause and no unit lause

2

; so, the other one has

length 2 or 3. This gives only two possible forms: our minimal formula '

0

(and

its symmetrial variants), and '

nae

de�ned as:

'

nae

: 9U 8x  

nae

(x) where  

nae

is the \not-all-equal" formula

 

nae

: (Ux _ Ufx _ Ugx) ^ (:Ux _ :Ufx _ :Ugx):

One easily sees that for any funtion struture S, the number #fU : (S; U) j=

8x  

nae

(x)g is even beause  

nae

is invariant by inversion of U and :U . So, no re-

dution from Sat to the problem de�ned by '

nae

(if suh a polynomial redution

exists) an be parsimonious with the standard way of ounting solutions.

� the length (= 7): it is a onsequene of the fat that there should be at

least three lauses of length � 2 with at least one of length 3. ut

2

If ' ontained a unit lause, then it would de�ne either a trivial \yes"-problem or a

trivial \no"-problem.



2.8 Uniity of '

nand

in Theorem 5(ii)

Proof. Clearly, any formula that meets our minimality onditions, i.e., that has

three lauses and length 7, has exatly one 3-lause and two 2-lauses. Moreover:

(i) At least one lause is purely positive and at least one is purely negative;

(ii) No 2-lause subsumes the 3-lause;

(iii) Eah 2-lause must disagree with the 3-lause on the sign of every literal:

otherwise, if we write the 3-lause as (`

1

_ `

2

_ `

3

), either the 2-lause is of the

form (`

1

_ `

2

) and then its subsumes the 3-lause, or the 2-lause is of the form

(`

1

_ `

2

) and then a resolution step over `

1

indues the 2-lause (`

2

_ `

3

) that in

turn subsumes the 3-lause. This ontradits (ii);

(iv) The 2-lauses have exatly one atom in ommon: they learly have at

least one sine there are only three atoms available. Now, if they have two, they

disagree on the sign of either one literal or two literals. If we have (`

1

_ `

2

) ^

(`

1

_ `

2

), then a resolution step over `

2

indues the unit lause (`

1

). If we have

(`

1

_ `

2

)^ (`

1

_ `

2

), then `

1

() `

2

and the 3-lause redues either to a 2-lause

or to \true" by replaing `

1

by `

2

;

(v) The 3-lause must be monotone. Otherwise, by (i), the two 2-lauses

must be monotone of opposite sign: Let then " be the majoritary sign of the

3-lause. The 2-lause of sign " annot disagree on the sign of every literal with

the 3-lause, sine this latter has only one literal of sign ". This ontradits (iii);

(vi) Both 2-lauses are monotone, of the same sign, opposite to the sign of

the 3-lause: This is a diret onsequene of (iii) and (v).

Clearly, Remarks (iv), (v) and (vi) together leave exatly  

nand

and its sym-

metrial variants as the only andidates. ut

3 Conlusion and open problems

Exhibiting \the" minimal EMSO formula that de�nes an NP-omplete problem

over funtional strutures is the main ontribution of this paper. The \mini-

mality" is also strengthened by the fat that this main result also holds when

restrited to permutation strutures or even to planar permutation strutures

whih seem to be the simplest funtional strutures. A striking point is the

uniity (up to symmetries) of our formula. More preisely, we have seen that

all the symmetrial forms of our minimal formula essentially de�ne only two

distint NP-omplete problems over funtional strutures (see formulas '

0

and

'

0

0

in Setion 2.6) and only one suh problem over permutation (resp. planar

permutation) strutures. This delineates a very neat frontier in logi between

NP-omplete problems and tratable ones. Several open problems remain:

The �rst one is the analogous minimality question over relational strutures.

The seond one is Conjeture 1 and its analogue for funtion strutures: is there

a parsimonious redution from #Sat to #Min

0

? A diÆulty in ounting om-

plexity is to de�ne a relevant notion of redution. Reently, Durand et al [3℄

have de�ned an interesting redution, allled subtrative redution, under whih

#P and other ounting omplexity lasses are losed and have signi�ant om-

plete problems. If positively answered, the following question may be easier and



more relevant than Conjeture 1: is there a subtrative redution from #Sat to

#Min

1

and #Min

2

(i.e., are the latter #P-omplete under suh redutions)?

Another interesting objetive onsists in looking for a neessary and suÆient

deidable ondition for whih any EMSO formula of the form 9U 8x  (U; f; x)

and of unary signature f expresses an NP-omplete problem over f-strutures

(resp. over permutation f -strutures, or over planar permutation f -strutures.)

Finally, does the EMSO formula '

nae

of subsetion 2.7 de�ne a PTIME or

NP-omplete problem over permutation strutures? Notie that '

nae

de�nes a

PTIME problem over planar permutation strutures sine the problem Nae-Sat

is PTIME for planar instanes [11℄.
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