WRM: Weather Routing Metaheuristic

Stéphane Grandcolas

COALA, LIS, Aix-Marseille Université

June, 2022

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Contact: stephane.grandcolas@univ-amu.fr

Search optimised routes for ships in an environment that changes with the time.

(a)

Plan

Ship weather routing

WRM : a new approach for ship weather routing

WRM running

Search optimised routes for ships in an environment that changes with the time.

(a)

э

Plan

- the problem,
- ► WRM approach,
- experimentations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Search optimised routes for ships in an environment that changes with the time.

Environmental factors

- wind (speed, direction),
- waves (direction, height,...),

affect ship performances

- consumption,
- progression,

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

SOG with 15-knots wind, power levels 5 kW, 10 kW, 15 kW, 25 kW, 50 kW

Ship weather routing : Route

Route :

- a trajectory,
- ▶ a value representing the *speed* at each point of the trajectory.

speed parameter

► SOG, engine power level, shaft rotation speed,...

Optimize :

- cost,
- safety, green gazes emissions, comfort, duration,...

 $\label{eq:constraints} \textbf{Constraints}: \mathsf{dates}, \, \mathsf{forbidden/penalized} \, \mathsf{regions}, \, \mathsf{bad} \, \mathsf{weather} \\ \mathsf{conditions}, \ldots$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

The search space is continuous in space as in time

Publications :

Fig. 2. Publishing trend in the area of ship weather routing and voyage optimization. Source: Scopus February 2020.

Zis, T.P., Psaraftis, H.N., Ding, L. : Ship weather routing : A taxonomy and survey. Ocean Engineering 213, 107697 (2020).

イロト 不得下 イヨト イヨト

э

...

Existing approaches :

isochrones, isopones : time/fuel consumption,

(ロ) (型) (E) (E) (E) (O)

- dynamic programming : 2D, 3D,
- Dijkstra based algorithms,
- genetic algorithms,

Existing approaches :

- isochrones, isopones : time/fuel consumption,
- dynamic programming : 2D, 3D,
- Dijkstra based algorithms,
- genetic algorithms,

► ...

WRM : metaheuristic

Iaunch many times a simple forward algorithm on simplified versions of the problem

(ロ) (型) (E) (E) (E) (O)

Grandcolas, S., A metaheuristic algorithm for ship weather routing, to appear in *Operations Research Forum*, 2022. DOI : 10.1007/s43069-022-00140-0

Existing approaches

"Multi-Objective Optimization of Motor Vessel Route." Marie, S., Courteille, E. 2009

"Development of a novel forward dynamic programming method for weather routing" Shao, W., Zhou, P., Thong, S. 2011

Existing approaches

"An Ant Colony Algorithm for efficient ship routing." Tsou, M.C., Cheng, H.C. 2013

"The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements." Fang, M.C., Lin, Y.H. 2015

"Minimizing the fuel consumption and the risk in maritime transportation : A bi-objective weather routing approach" Veneti, A., Makrygiorgos, A., Konstantopoulos, C., Pantziou, G., Vetsikas, I. 2017

"Multi-Objective Weather Routing of Sailing Vessels." Życzkowski, Marcin and Rafal Szlapczynski. 2017

Existing approaches : 3D dynamic programming

Kim, K.I., Lee, K.M. : Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction. Energies 11(5) (2018).

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Existing approaches : Dijkstra's algorithm

Fig. 3. An illustration of the 3D graph (a grid of waypoints) system for voyage optimization.

・ロト ・得ト ・ヨト ・ヨト

3

Wang, H., Mao, W., Eriksson, L. : A Three-Dimensional Dijkstra's algorithm for multi- objective ship voyage optimization. Ocean Engineering 186, 106131 (2019).

WRM : Weather Routing Metaheuristic

Ship weather routing

WRM : a new approach for ship weather routing

WRM running

WRM

Problem :

- departure, destination,
- a time window,
- a weather forecast,
- speed parameter : engine power level

Goal : find a route whose total cost is minimal

The idea : solve a series of simplified versions of the problem gradually focusing on the most promising area.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

$$P = \{p_0, p_1, \dots, p_n\} \\ L = \{(p_i, p_j), p_i, p_j \in P\} \\ W = \{l_1, l_2, \dots, l_m\} \\ [t_{min}, t_{max}] \\ \mathcal{F}$$

points legs power level values time window weather forecast

(P, L): directed, acyclic.

$$P = \{p_0, p_1, \dots, p_n\} \\ L = \{(p_i, p_j), p_i, p_j \in P\} \\ W = \{l_1, l_2, \dots, l_m\} \\ [t_{min}, t_{max}] \\ \mathcal{F}$$

points legs power levels time window weather forecast

Route :
$$(t_{dep}, (u_0, u_1, ..., u_k), (w_0, w_1, ..., w_{k-1}))$$

for each *i*, $(u_i, u_{i+1}) \in L$ and $w_i \in W$, constant power level on each leg.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Evaluation of crossings :

- ► duration(u, v, w, t, F)
- $cost(u, v, w, t, \mathcal{F})$

duration and cost to cross from u to v at the date t at engine power level w, given the forecast \mathcal{F} .

Evaluation of crossings :

- ▶ duration(u, v, w, t, F)
- $cost(u, v, w, t, \mathcal{F})$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

$$\textit{P} = \textit{P}_{\textit{idle}} + (\textit{P}_{\textit{calm}} + \textit{P}_{\textit{wind}}) imes \textit{C}_{\textit{waves}}$$

Evaluation of crossings :

- ► duration(u, v, w, t, F)
- $cost(u, v, w, t, \mathcal{F})$

$$P = P_{idle} + (P_{calm} + P_{wind}) imes C_{waves}$$

$$\begin{aligned} P_{calm} &= c_1 \times v^{2.5} \\ P_{wind} &= c_2 \times A \times s_a^2 \times \cos \theta_a \\ C_{waves} &= f(\lambda, L, \theta_w, v) \end{aligned}$$

- v:SOG
- A : projected surface area
- θ_{a} : apparent wind to ship angle
- sa : apparent wind speed
- λ : waves length
- L : ship length
- θ_w : waves to ship angle

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Valid route :
$$\langle t_{dep}, (u_0, u_1, \ldots, u_k), (w_0, w_1, \ldots, w_{k-1}) \rangle$$

satisfies

$$t_{dep} \geq t_{min}$$
 and $t_{arr} \leq t_{max}$

where t_{arr} is the arrival date

WRM : searching a good route

Dated costs : (u, t, c)

there is a route that reaches u at date t whose cost is c

Combinatorial explosion : discard the dated costs that seem the least promising.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Best route : Arrival best dated cost.

Improvements :

- minimal arrival dates (forward exploration),
- maximal arrival dates (backward exploration),
- minimal bounds of the costs,

Number of legs evaluations :

```
\mathcal{O}(|L|\times |W|\times K)
```

ション ふゆ アメリア メリア しょうくの

K : given limit of the number of dated costs for each vertex

WRM : Metaheuristic algorithm

```
algorithm WRM (dep, dest, t_{min}, t_{max}, P_{min}, P_{max}, \mathcal{F}, nb_{runs})

\pi := initial parameters,

repeat nb_{runs} times

\pi-generate a simplified problem \mathcal{P},

solve \mathcal{P} propagating dated costs,

update bestRoute,

update \pi,

end loop

return bestRoute,
```

- first runs : unconstrained generation,
- following runs : strengthen π parameters step by step, so as to converge towards the most promising areas

イロト イポト イヨト イヨト

æ

Generate problem

Search a good route

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Mark surrounding area

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

イロト イポト イヨト イヨト

E 990

Generate problem

Search a route

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Mark surrounding area

Strengthen generation parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- perimeter,
- time windows,
- steps and ranges of the power levels.

WRM : Weather Routing Metaheuristic

Ship weather routing

WRM : a new approach for ship weather routing

WRM running

WRM : Marseille-Chypre [130h, 260h]

$l{=}1581.5NM/1394.1NM$ sp=12.2kn cost=2101399.2 130.0h-260.0h (130.0h) (16 mar 10h00 to 21 mar 19h57) 57 points 141.6s

Forecast : NOAA (National Oceanic and Atmospheric Administration), GFS atmospheric and waves models, 384h, 3 hours intervals, resolution $0.25^\circ.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

WRM : Marseille-Chypre [130h, 260h], shortest route

Direct route (simulation) :

- 1451.2 nautic miles,
- 128.5 hours,
- cost 4315241 (constant power 31.5kw)

Route returned by WRM :

- 1581.5 nautic miles,
- 130.0 hours (avg speed 12.2 knots),

cost 2101399

cost at idle : 677237

WRM : Marseille-Chypre penalize bad weather conditions

Training of the second se			
	w	ind speed ind heading	\ge 22 knots \le 120 $^{\circ}$
36 mar 10h00 +130h	w. w	aves height aves heading	\ge 1.5 m \ge 10 $^{\circ}$

$l{=}1703.9NM/1394.1NM$ sp=16.3kn cost=3704002.4 155.5h-260.0h (104.5h) (17 mar 11h27 to 21 mar 19h59) 50 points 309.8s

 $l{=}1581.5NM/1394.1NM$ sp=12.2kn cost=2101399.2 130.0h-260.0h (130.0h) (16 mar 10h00 to 21 mar 19h57) 57 points 141.6s

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

WRM : Marseille-Chypre ECA [130h, 260h]

ECA (Emission Control Areas) : cost increase 20%

$l{=}1631.4NM/1394.1NM$ sp=12.8kn cost=2191371.0 132.5h-260.0h (127.5h) (16 mar 12h27 to 21 mar 19h59) 57 points 103.2s

 $l{=}1581.5NM/1394.1NM$ sp=12.2kn cost=2101399.2 130.0h-260.0h (130.0h) (16 mar 10h00 to 21 mar 19h57) 57 points 141.6s

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

WRM : Marseille-Chypre ECA [130h, 260h]

 $l{=}1737.9NM/1394.1NM$ sp=13.4kn cost=2501611.2 130.0h-260.0h (130.0h) (16 mar 10h00 to 21 mar 20h01) 59 points 54.4s

(a)

ж

Merci !

◆□ > < 個 > < E > < E > E 9 < 0</p>